tidy_all_effects {broom.helpers} | R Documentation |
Marginal Predictions at the mean with effects::allEffects()
Description
Use effects::allEffects()
to estimate marginal predictions and
return a tibble tidied in a way that it could be used by broom.helpers
functions.
See vignette("functions-supported-by-effects", package = "effects")
for
a list of supported models.
Usage
tidy_all_effects(x, conf.int = TRUE, conf.level = 0.95, ...)
Arguments
x |
a model |
conf.int |
logical indicating whether or not to include a confidence interval in the tidied output |
conf.level |
the confidence level to use for the confidence interval |
... |
additional parameters passed to |
Details
By default, effects::allEffects()
estimate marginal predictions at the mean
at the observed means for continuous variables and weighting modalities
of categorical variables according to their observed distribution in the
original dataset. Marginal predictions are therefore computed at
a sort of averaged situation / typical values for the other variables fixed
in the model.
For more information, see vignette("marginal_tidiers", "broom.helpers")
.
Note
If the model contains interactions, effects::allEffects()
will return
marginal predictions for the different levels of the interactions.
See Also
effects::allEffects()
Other marginal_tieders:
tidy_avg_comparisons()
,
tidy_avg_slopes()
,
tidy_ggpredict()
,
tidy_marginal_contrasts()
,
tidy_marginal_means()
,
tidy_marginal_predictions()
,
tidy_margins()
Examples
df <- Titanic %>%
dplyr::as_tibble() %>%
tidyr::uncount(n) %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- glm(
Survived ~ Class + Age + Sex,
data = df, family = binomial
)
tidy_all_effects(mod)
tidy_plus_plus(mod, tidy_fun = tidy_all_effects)