tidy_add_header_rows {broom.helpers} | R Documentation |
Add header rows variables with several terms
Description
For variables with several terms (usually categorical variables but
could also be the case of continuous variables with polynomial terms
or splines), tidy_add_header_rows()
will add an additional row
per variable, where label
will be equal to var_label
.
These additional rows could be identified with header_row
column.
Usage
tidy_add_header_rows(
x,
show_single_row = NULL,
model = tidy_get_model(x),
quiet = FALSE,
strict = FALSE
)
Arguments
x |
a tidy tibble |
show_single_row |
a vector indicating the names of binary
variables that should be displayed on a single row.
Accepts tidyselect syntax. Default is |
model |
the corresponding model, if not attached to |
quiet |
logical argument whether broom.helpers should not return
a message when requested output cannot be generated. Default is |
strict |
logical argument whether broom.helpers should return an error
when requested output cannot be generated. Default is |
Details
The show_single_row
argument allows to specify a list
of dichotomous variables that should be displayed on a single row
instead of two rows.
The added header_row
column will be equal to:
-
TRUE
for an header row; -
FALSE
for a normal row of a variable with an header row; -
NA
for variables without an header row.
If the label
column is not yet available in x
,
tidy_add_term_labels()
will be automatically applied.
See Also
Other tidy_helpers:
tidy_add_coefficients_type()
,
tidy_add_contrasts()
,
tidy_add_estimate_to_reference_rows()
,
tidy_add_n()
,
tidy_add_pairwise_contrasts()
,
tidy_add_reference_rows()
,
tidy_add_term_labels()
,
tidy_add_variable_labels()
,
tidy_attach_model()
,
tidy_disambiguate_terms()
,
tidy_identify_variables()
,
tidy_plus_plus()
,
tidy_remove_intercept()
,
tidy_select_variables()
Examples
if (.assert_package("gtsummary", boolean = TRUE)) {
df <- Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
res <- df %>%
glm(
Survived ~ Class + Age + Sex,
data = ., weights = .$n, family = binomial,
contrasts = list(Age = contr.sum, Class = "contr.SAS")
) %>%
tidy_and_attach() %>%
tidy_add_variable_labels(labels = list(Class = "Custom label for Class")) %>%
tidy_add_reference_rows()
res %>% tidy_add_header_rows()
res %>% tidy_add_header_rows(show_single_row = all_dichotomous())
glm(
response ~ stage + grade * trt,
gtsummary::trial,
family = binomial,
contrasts = list(
stage = contr.treatment(4, base = 3),
grade = contr.treatment(3, base = 2),
trt = contr.treatment(2, base = 2)
)
) %>%
tidy_and_attach() %>%
tidy_add_reference_rows() %>%
tidy_add_header_rows()
}