| tidy_add_estimate_to_reference_rows {broom.helpers} | R Documentation |
Add an estimate value to references rows for categorical variables
Description
For categorical variables with a treatment contrast
(stats::contr.treatment()) or a SAS contrast (stats::contr.SAS()),
will add an estimate equal to 0 (or 1 if exponentiate = TRUE)
to the reference row.
Usage
tidy_add_estimate_to_reference_rows(
x,
exponentiate = attr(x, "exponentiate"),
conf.level = attr(x, "conf.level"),
model = tidy_get_model(x),
quiet = FALSE
)
Arguments
x |
a tidy tibble |
exponentiate |
logical indicating whether or not to exponentiate the
coefficient estimates. It should be consistent with the original call to
|
conf.level |
confidence level, by default use the value indicated
previously in |
model |
the corresponding model, if not attached to |
quiet |
logical argument whether broom.helpers should not return
a message when requested output cannot be generated. Default is |
Details
For categorical variables with a sum contrast (stats::contr.sum()),
the estimate value of the reference row will be equal to the sum of
all other coefficients multiplied by -1 (eventually exponentiated if
exponentiate = TRUE), and obtained with emmeans::emmeans().
The emmeans package should therefore be installed.
For sum contrasts, the model coefficient corresponds
to the difference of each level with the grand mean.
For sum contrasts, confidence intervals and p-values will also
be computed and added to the reference rows.
For other variables, no change will be made.
If the reference_row column is not yet available in x,
tidy_add_reference_rows() will be automatically applied.
See Also
Other tidy_helpers:
tidy_add_coefficients_type(),
tidy_add_contrasts(),
tidy_add_header_rows(),
tidy_add_n(),
tidy_add_pairwise_contrasts(),
tidy_add_reference_rows(),
tidy_add_term_labels(),
tidy_add_variable_labels(),
tidy_attach_model(),
tidy_disambiguate_terms(),
tidy_identify_variables(),
tidy_plus_plus(),
tidy_remove_intercept(),
tidy_select_variables()
Examples
if (.assert_package("gtsummary", boolean = TRUE) && .assert_package("emmeans", boolean = TRUE)) {
df <- Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(dplyr::across(where(is.character), factor))
df %>%
glm(
Survived ~ Class + Age + Sex,
data = ., weights = .$n, family = binomial,
contrasts = list(Age = contr.sum, Class = "contr.SAS")
) %>%
tidy_and_attach(exponentiate = TRUE) %>%
tidy_add_reference_rows() %>%
tidy_add_estimate_to_reference_rows()
glm(
response ~ stage + grade * trt,
gtsummary::trial,
family = binomial,
contrasts = list(
stage = contr.treatment(4, base = 3),
grade = contr.treatment(3, base = 2),
trt = contr.treatment(2, base = 2)
)
) %>%
tidy_and_attach() %>%
tidy_add_reference_rows() %>%
tidy_add_estimate_to_reference_rows()
}