| model_list_variables {broom.helpers} | R Documentation |
List all the variables used in a model
Description
Including variables used only in an interaction.
Usage
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## Default S3 method:
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## S3 method for class 'lavaan'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## S3 method for class 'logitr'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
Arguments
model |
a model object |
labels |
an optional named list or named vector of custom variable labels |
only_variable |
if |
add_var_type |
if |
Value
A tibble with three columns:
-
variable: the corresponding variable -
var_class: class of the variable (cf.stats::.MFclass()) -
label_attr: variable label defined in the original data frame with the label attribute (cf.labelled::var_label()) -
var_label: a variable label (by priority,labelsif defined,label_attrif available, otherwisevariable)
If add_var_type = TRUE:
-
var_type:"continuous","dichotomous"(categorical variable with 2 levels),"categorical"(categorical variable with 3 or more levels),"intercept"or"interaction" -
var_nlevels: number of original levels for categorical variables
See Also
Other model_helpers:
model_compute_terms_contributions(),
model_get_assign(),
model_get_coefficients_type(),
model_get_contrasts(),
model_get_model(),
model_get_model_frame(),
model_get_model_matrix(),
model_get_n(),
model_get_nlevels(),
model_get_offset(),
model_get_pairwise_contrasts(),
model_get_response(),
model_get_response_variable(),
model_get_terms(),
model_get_weights(),
model_get_xlevels(),
model_identify_variables(),
model_list_contrasts(),
model_list_higher_order_variables(),
model_list_terms_levels()
Examples
if (.assert_package("gtsummary", boolean = TRUE)) {
Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) %>%
glm(
Survived ~ Class + Age:Sex,
data = ., weights = .$n,
family = binomial
) %>%
model_list_variables()
iris %>%
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = .,
contrasts = list(Species = contr.sum)
) %>%
model_list_variables()
glm(
response ~ poly(age, 3) + stage + grade * trt,
na.omit(gtsummary::trial),
family = binomial,
) %>%
model_list_variables()
}