model_list_variables {broom.helpers} | R Documentation |
List all the variables used in a model
Description
Including variables used only in an interaction.
Usage
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## Default S3 method:
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## S3 method for class 'lavaan'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
## S3 method for class 'logitr'
model_list_variables(
model,
labels = NULL,
only_variable = FALSE,
add_var_type = FALSE
)
Arguments
model |
a model object |
labels |
an optional named list or named vector of custom variable labels |
only_variable |
if |
add_var_type |
if |
Value
A tibble with three columns:
-
variable
: the corresponding variable -
var_class
: class of the variable (cf.stats::.MFclass()
) -
label_attr
: variable label defined in the original data frame with the label attribute (cf.labelled::var_label()
) -
var_label
: a variable label (by priority,labels
if defined,label_attr
if available, otherwisevariable
)
If add_var_type = TRUE
:
-
var_type
:"continuous"
,"dichotomous"
(categorical variable with 2 levels),"categorical"
(categorical variable with 3 or more levels),"intercept"
or"interaction"
-
var_nlevels
: number of original levels for categorical variables
See Also
Other model_helpers:
model_compute_terms_contributions()
,
model_get_assign()
,
model_get_coefficients_type()
,
model_get_contrasts()
,
model_get_model()
,
model_get_model_frame()
,
model_get_model_matrix()
,
model_get_n()
,
model_get_nlevels()
,
model_get_offset()
,
model_get_pairwise_contrasts()
,
model_get_response()
,
model_get_response_variable()
,
model_get_terms()
,
model_get_weights()
,
model_get_xlevels()
,
model_identify_variables()
,
model_list_contrasts()
,
model_list_higher_order_variables()
,
model_list_terms_levels()
Examples
if (.assert_package("gtsummary", boolean = TRUE)) {
Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) %>%
glm(
Survived ~ Class + Age:Sex,
data = ., weights = .$n,
family = binomial
) %>%
model_list_variables()
iris %>%
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = .,
contrasts = list(Species = contr.sum)
) %>%
model_list_variables()
glm(
response ~ poly(age, 3) + stage + grade * trt,
na.omit(gtsummary::trial),
family = binomial,
) %>%
model_list_variables()
}