| model_list_terms_levels {broom.helpers} | R Documentation |
List levels of categorical terms
Description
Only for categorical variables with treatment,
SAS, sum or successive differences contrasts (cf. MASS::contr.sdif()), and
categorical variables with no contrast.
Usage
model_list_terms_levels(
model,
label_pattern = "{level}",
variable_labels = NULL,
sdif_term_level = c("diff", "ratio")
)
## Default S3 method:
model_list_terms_levels(
model,
label_pattern = "{level}",
variable_labels = NULL,
sdif_term_level = c("diff", "ratio")
)
Arguments
model |
a model object |
label_pattern |
a glue pattern for term labels (see examples) |
variable_labels |
an optional named list or named vector of
custom variable labels passed to |
sdif_term_level |
for successive differences contrasts, how should term
levels be named? |
Value
A tibble with ten columns:
-
variable: variable -
contrasts_type: type of contrasts ("sum" or "treatment") -
term: term name -
level: term level -
level_rank: rank of the level -
reference: logical indicating which term is the reference level -
reference_level: level of the reference term -
var_label: variable label obtained withmodel_list_variables() -
var_nlevels: number of levels in this variable -
dichotomous: logical indicating if the variable is dichotomous -
label: term label (by default equal to term level) The first nine columns can be used inlabel_pattern.
See Also
Other model_helpers:
model_compute_terms_contributions(),
model_get_assign(),
model_get_coefficients_type(),
model_get_contrasts(),
model_get_model(),
model_get_model_frame(),
model_get_model_matrix(),
model_get_n(),
model_get_nlevels(),
model_get_offset(),
model_get_pairwise_contrasts(),
model_get_response(),
model_get_response_variable(),
model_get_terms(),
model_get_weights(),
model_get_xlevels(),
model_identify_variables(),
model_list_contrasts(),
model_list_higher_order_variables(),
model_list_variables()
Examples
glm(
am ~ mpg + factor(cyl),
data = mtcars,
family = binomial,
contrasts = list(`factor(cyl)` = contr.sum)
) %>%
model_list_terms_levels()
df <- Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes")))
mod <- df %>%
glm(
Survived ~ Class + Age + Sex,
data = ., weights = .$n, family = binomial,
contrasts = list(Age = contr.sum, Class = "contr.helmert")
)
mod %>% model_list_terms_levels()
mod %>% model_list_terms_levels("{level} vs {reference_level}")
mod %>% model_list_terms_levels("{variable} [{level} - {reference_level}]")
mod %>% model_list_terms_levels(
"{ifelse(reference, level, paste(level, '-', reference_level))}"
)