| model_identify_variables {broom.helpers} | R Documentation |
Identify for each coefficient of a model the corresponding variable
Description
It will also identify interaction terms and intercept(s).
Usage
model_identify_variables(model)
## Default S3 method:
model_identify_variables(model)
## S3 method for class 'lavaan'
model_identify_variables(model)
## S3 method for class 'aov'
model_identify_variables(model)
## S3 method for class 'clm'
model_identify_variables(model)
## S3 method for class 'clmm'
model_identify_variables(model)
## S3 method for class 'gam'
model_identify_variables(model)
## S3 method for class 'model_fit'
model_identify_variables(model)
## S3 method for class 'logitr'
model_identify_variables(model)
Arguments
model |
a model object |
Value
A tibble with four columns:
-
term: coefficients of the model -
variable: the corresponding variable -
var_class: class of the variable (cf.stats::.MFclass()) -
var_type:"continuous","dichotomous"(categorical variable with 2 levels),"categorical"(categorical variable with 3 or more levels),"intercept"or"interaction" -
var_nlevels: number of original levels for categorical variables
See Also
Other model_helpers:
model_compute_terms_contributions(),
model_get_assign(),
model_get_coefficients_type(),
model_get_contrasts(),
model_get_model(),
model_get_model_frame(),
model_get_model_matrix(),
model_get_n(),
model_get_nlevels(),
model_get_offset(),
model_get_pairwise_contrasts(),
model_get_response(),
model_get_response_variable(),
model_get_terms(),
model_get_weights(),
model_get_xlevels(),
model_list_contrasts(),
model_list_higher_order_variables(),
model_list_terms_levels(),
model_list_variables()
Examples
Titanic %>%
dplyr::as_tibble() %>%
dplyr::mutate(Survived = factor(Survived, c("No", "Yes"))) %>%
glm(
Survived ~ Class + Age * Sex,
data = ., weights = .$n,
family = binomial
) %>%
model_identify_variables()
iris %>%
lm(
Sepal.Length ~ poly(Sepal.Width, 2) + Species,
data = .,
contrasts = list(Species = contr.sum)
) %>%
model_identify_variables()