stratify_keys {brolgar} | R Documentation |
Stratify the keys into groups to facilitate exploration
Description
To look at as much of the raw data as possible, it can be helpful to
stratify the data into groups for plotting. You can stratify
the
keys
using the stratify_keys()
function, which adds the column,
.strata
. This allows the user to create facetted plots showing a more
of the raw data.
Usage
stratify_keys(.data, n_strata, along = NULL, fun = mean, ...)
Arguments
.data |
data.frame to explore |
n_strata |
number of groups to create |
along |
variable to stratify along. This groups by each |
fun |
summary function. Default is mean. |
... |
extra arguments |
Value
data.frame with column, .strata
containing n_strata
groups
Examples
library(ggplot2)
library(brolgar)
heights %>%
sample_frac_keys(size = 0.1) %>%
stratify_keys(10) %>%
ggplot(aes(x = height_cm,
y = year,
group = country)) +
geom_line() +
facet_wrap(~.strata)
# now facet along some feature
library(dplyr)
heights %>%
key_slope(height_cm ~ year) %>%
right_join(heights, ., by = "country") %>%
stratify_keys(n_strata = 12,
along = .slope_year,
fun = median) %>%
ggplot(aes(x = year,
y = height_cm,
group = country)) +
geom_line() +
facet_wrap(~.strata)
heights %>%
stratify_keys(n_strata = 12,
along = height_cm) %>%
ggplot(aes(x = year,
y = height_cm,
group = country)) +
geom_line() +
facet_wrap(~.strata)
[Package brolgar version 1.0.1 Index]