simul_data_UniYX_gamma {bootPLS} | R Documentation |
Data generating function for univariate gamma plsR models
Description
This function generates a single univariate gamma response value Ygamma
and a vector of explanatory variables (X_1,\ldots,X_{totdim})
drawn
from a model with a given number of latent components.
Usage
simul_data_UniYX_gamma(totdim, ncomp, jvar, lvar, link = "inverse", offset = 0)
Arguments
totdim |
Number of columns of the X vector (from |
ncomp |
Number of latent components in the model (to use noise, select ncomp=3) |
jvar |
First variance parameter |
lvar |
Second variance parameter |
link |
Character specification of the link function in the mean model
(mu). Currently, " |
offset |
Offset on the linear scale |
Details
This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a modification of a port of the one described in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.
Value
vector |
|
Author(s)
Jeremy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
T. Naes, H. Martens, Comparison of prediction methods for
multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576.
Morris, Elaine B. Martin, Model selection for partial least squares
regression, Chemometrics and Intelligent Laboratory Systems 64 (2002),
79-89, doi: 10.1016/S0169-7439(02)00051-5.
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi: 10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Compututing, 27, 757–774.
doi: 10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics, accepted.
See Also
Examples
set.seed(314)
ncomp=rep(3,100)
totdimpos=7:50
totdim=sample(totdimpos,100,replace=TRUE)
l=3.01
#for (l in seq(3.01,15.51,by=0.5)) {
j=3.01
#for (j in seq(3.01,9.51,by=0.5)) {
i=44
#for ( i in 1:100){
set.seed(i)
totdimi<-totdim[i]
ncompi<-ncomp[i]
datasim <- t(replicate(200,simul_data_UniYX_gamma(totdimi,ncompi,j,l)))
#}
#}
#}
pairs(datasim)
rm(i,j,l,totdimi,ncompi,datasim)