nbcomp.bootsgpls {bootPLS} | R Documentation |
Number of components for SGPLS using (Y,T) bootstrap
Description
Number of components for SGPLS using (Y,T) bootstrap
Usage
nbcomp.bootsgpls(
x,
y,
fold = 10,
eta,
R,
scale.x = TRUE,
maxnt = 10,
plot.it = TRUE,
br = TRUE,
ftype = "iden",
typeBCa = TRUE,
stabvalue = 1e+06,
verbose = TRUE
)
Arguments
x |
Matrix of predictors. |
y |
Vector or matrix of responses. |
fold |
Number of fold for cross-validation |
eta |
Thresholding parameter. eta should be between 0 and 1. |
R |
Number of resamplings. |
scale.x |
Scale predictors by dividing each predictor variable by its sample standard deviation? |
maxnt |
Maximum number of components allowed in a spls model. |
plot.it |
Plot the results. |
br |
Apply Firth's bias reduction procedure? |
ftype |
Type of Firth's bias reduction procedure. Alternatives are "iden" (the approximated version) or "hat" (the original version). Default is "iden". |
typeBCa |
Include computation for BCa type interval. |
stabvalue |
A value to hard threshold bootstrap estimates computed from atypical resamplings. |
verbose |
Additionnal information on the algorithm. |
Value
List of four: error matrix, eta optimal, K optimal and the matrix of results.
Author(s)
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi: 10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Compututing, 27, 757–774.
doi: 10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics, accepted.
Examples
set.seed(4619)
data(prostate, package="spls")
nbcomp.bootsgpls((prostate$x)[,1:30], prostate$y, R=250, eta=0.2, maxnt=1, typeBCa = FALSE)
set.seed(4619)
data(prostate, package="spls")
nbcomp.bootsgpls(prostate$x, prostate$y, R=250, eta=c(0.2,0.6), typeBCa = FALSE)