nbcomp.bootplsRglm {bootPLS} | R Documentation |
Non-parametric (Y,T) Bootstrap for selecting the number of components in PLS GLR models
Description
Provides a wrapper for the bootstrap function boot
from the
boot
R package.
Implements non-parametric bootstraps for PLS
Generalized Linear Regression models by (Y,T) resampling to select the
number of components.
Usage
nbcomp.bootplsRglm(
object,
typeboot = "boot_comp",
R = 250,
statistic = coefs.plsRglm.CSim,
sim = "ordinary",
stype = "i",
stabvalue = 1e+06,
...
)
Arguments
object |
An object of class |
typeboot |
The type of bootstrap. ( |
R |
The number of bootstrap replicates. Usually this will be a single
positive integer. For importance resampling, some resamples may use one set
of weights and others use a different set of weights. In this case |
statistic |
A function which when applied to data returns a vector
containing the statistic(s) of interest. |
sim |
A character string indicating the type of simulation required.
Possible values are |
stype |
A character string indicating what the second argument of
|
stabvalue |
A value to hard threshold bootstrap estimates computed from atypical resamplings. Especially useful for Generalized Linear Models. |
... |
Other named arguments for |
Details
More details on bootstrap techniques are available in the help of the
boot
function.
Value
An object of class "boot"
. See the Value part of the help of
the function boot
.
Author(s)
Jérémy Magnanensi, Frédéric Bertrand
frederic.bertrand@utt.fr
https://fbertran.github.io/homepage/
References
A new bootstrap-based stopping criterion in PLS component construction,
J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand (2016), in The Multiple Facets of Partial Least Squares and Related Methods,
doi: 10.1007/978-3-319-40643-5_18
A new universal resample-stable bootstrap-based stopping criterion for PLS component construction,
J. Magnanensi, F. Bertrand, M. Maumy-Bertrand and N. Meyer, (2017), Statistics and Compututing, 27, 757–774.
doi: 10.1007/s11222-016-9651-4
New developments in Sparse PLS regression, J. Magnanensi, M. Maumy-Bertrand, N. Meyer and F. Bertrand, (2021), Frontiers in Applied Mathematics and Statistics, accepted.
Examples
set.seed(314)
library(plsRglm)
data(aze_compl, package="plsRglm")
Xaze_compl<-aze_compl[,2:34]
yaze_compl<-aze_compl$y
dataset <- cbind(y=yaze_compl,Xaze_compl)
modplsglm <- plsRglm::plsRglm(y~.,data=dataset,10,modele="pls-glm-family", family = binomial)
comp_aze_compl.bootYT <- nbcomp.bootplsRglm(modplsglm, R=250)
boxplots.bootpls(comp_aze_compl.bootYT)
confints.bootpls(comp_aze_compl.bootYT)
plots.confints.bootpls(confints.bootpls(comp_aze_compl.bootYT),typeIC = "BCa")
comp_aze_compl.permYT <- nbcomp.bootplsRglm(modplsglm, R=250, sim="permutation")
boxplots.bootpls(comp_aze_compl.permYT)
confints.bootpls(comp_aze_compl.permYT, typeBCa=FALSE)
plots.confints.bootpls(confints.bootpls(comp_aze_compl.permYT, typeBCa=FALSE))