getBetaFromCI {bootComb} | R Documentation |
Find the best-fit beta distribution for a given confidence interval for a probability parameter.
Description
Finds the best-fit beta distribution for a given confidence interval for a probability parameter; returns the corresponding density, distribution, quantile and sampling functions.
Usage
getBetaFromCI(qLow, qUpp, alpha = 0.05, initPars = c(50, 50), maxiter = 1000)
Arguments
qLow |
The observed lower quantile. |
qUpp |
The observed upper quantile. |
alpha |
The confidence level; i.e. the desired coverage is 1-alpha. Defaults to 0.05. |
initPars |
A vector of length 2 giving the initial parameter values to start the optimisation; defaults to c(50,50). |
maxiter |
Maximum number of iterations for |
Value
A list with 5 elements:
r |
The sampling function. |
d |
The density function. |
p |
The distribution function. |
q |
The quantile function. |
pars |
A vector of length 2 giving the two shape parameters for the best-fit beta distribution ( |
See Also
identifyBetaPars
, optim
, dbeta
Examples
b<-getBetaFromCI(qLow=0.1167,qUpp=0.1636,initPars=c(200,800))
print(b$pars) # the fitted parameter values
b$r(10) # 10 random values from the fitted beta distribution
b$d(0.15) # the probability density at x=0.15 for the fitted beta distribution
b$p(0.15) # the cumulative density at x=0.15 for the fitted beta distribution
b$q(c(0.25,0.5,0.75)) # the 25th, 50th (median) and 75th percentiles of the fitted distribution
x<-seq(0,1,length=1e3)
y<-b$d(x)
plot(x,y,type="l",xlab="",ylab="density") # density plot for the fitted beta distribution