cvrisk.boostrq {boostrq} | R Documentation |
Crossvalidation for boostrq
Description
Crossvalidation for boostrq
Usage
## S3 method for class 'boostrq'
cvrisk(
object,
folds = mboost::cv(object$weights, type = "kfold"),
grid = 0:mstop(object),
papply = parallel::mclapply,
mc.preschedule = FALSE,
fun = NULL,
...
)
Arguments
object |
a boostrq object |
folds |
a matrix indicating the weights for the k resampling iterations |
grid |
a vetor of stopping parameters the empirical quantile risk is to be evaluated for. |
papply |
(parallel) apply function, defaults to mclapply. To run sequentially (i.e. not in parallel), one can use lapply. |
mc.preschedule |
preschedule tasks if are parallelized using mclapply (default: FALSE)? For details see mclapply. |
fun |
if fun is NULL, the out-of-sample risk is returned. fun, as a function of object, may extract any other characteristic of the cross-validated models. These are returned as is. |
... |
additional arguments passed to callies |
Value
Cross-validated Boosting regression quantiles
Examples
boosted.rq <-
boostrq(
formula = mpg ~ brq(cyl * hp) + brq(am + wt),
data = mtcars,
mstop = 200,
nu = 0.1,
tau = 0.5
)
set.seed(101)
cvk.out <-
cvrisk(
boosted.rq,
grid = 0:mstop(boosted.rq),
folds = mboost::cv(boosted.rq$weights, type = "kfold", B = 5)
)
cvk.out
plot(cvk.out)
mstop(cvk.out)
boosted.rq[mstop(cvk.out)]
[Package boostrq version 1.0.0 Index]