gera.pa {bnpa} | R Documentation |
Generates a PA model
Description
This function receives a BN structure learned, the data set and some parameters and build a PA input model string. Then run the PA model using Structural Equation Model functions and export a PA graph and a PA model summary information.
Usage
gera.pa(bn.structure, data.to.work, pa.name, pa.imgname, bn.algorithm,
bn.score.test, outcome.var)
Arguments
bn.structure |
is a BN structure learned from data. |
data.to.work |
is a data frame containing the variables of the BN. |
pa.name |
is a variable to store the name of file to save PA parameters. |
pa.imgname |
is a variable to store the name of file to save PA graph. |
bn.algorithm |
is a list of algorithms to learn the BN structure. |
bn.score.test |
is a list of tests to be used during BN structure learning. |
outcome.var |
is the outcome variable. |
Author(s)
Elias Carvalho
References
Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2),1-36.
Examples
## Not run:
# Clean environment
closeAllConnections()
rm(list=ls())
# Set enviroment
# setwd("To your working directory")
# Load packages
library(bnpa)
# Load data sets from package
data(dataQualiN)
# Show first lines
head(dataQualiN)
# Learn BN structure
bn.structure <- bnlearn::hc(dataQualiN)
bnlearn::graphviz.plot(bn.structure)
# Set variables
pa.name<-"docPAHC"
pa.imgname<-"imgPAHC"
bn.algorithm<-"hc"
bn.score.test<-"aic-g"
outcome.var<-"D"
# Generates the PA model from bn structure
gera.pa(bn.structure, dataQualiN, pa.name, pa.imgname, bn.algorithm, bn.score.test, outcome.var)
## End(Not run)
[Package bnpa version 0.3.0 Index]