imm {bmm} | R Documentation |
Interference measurement model by Oberauer and Lin (2017).
Description
Three versions of the Interference measurement model by Oberauer and Lin (2017). - the full, bsc, and abc.
IMMfull()
, IMMbsc()
, and IMMabc()
are deprecated and will be removed in the future.
Please use imm(version = 'full')
, imm(version = 'bsc')
, or imm(version = 'abc')
instead.
Usage
imm(
resp_error,
nt_features,
nt_distances,
set_size,
regex = FALSE,
version = "full",
...
)
IMMfull(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...)
IMMbsc(resp_error, nt_features, nt_distances, set_size, regex = FALSE, ...)
IMMabc(resp_error, nt_features, set_size, regex = FALSE, ...)
Arguments
resp_error |
The name of the variable in the provided dataset containing
the response error. The response Error should code the response relative to
the to-be-recalled target in radians. You can transform the response error
in degrees to radian using the |
nt_features |
A character vector with the names of the non-target variables. The non_target variables should be in radians and be centered relative to the target. Alternatively, if regex=TRUE, a regular expression can be used to match the non-target feature columns in the dataset. |
nt_distances |
A vector of names of the columns containing the distances
of non-target items to the target item. Alternatively, if regex=TRUE, a regular
expression can be used to match the non-target distances columns in the
dataset. Only necessary for the |
set_size |
Name of the column containing the set size variable (if set_size varies) or a numeric value for the set_size, if the set_size is fixed. |
regex |
Logical. If TRUE, the |
version |
Character. The version of the IMM model to use. Can be one of
|
... |
used internally for testing, ignore it |
Details
-
Domain: Visual working memory
-
Task: Continuous reproduction
-
Name: Interference measurement model by Oberauer and Lin (2017).
-
Citation:
Oberauer, K., & Lin, H.Y. (2017). An interference model of visual working memory. Psychological Review, 124(1), 21-59
Version: full
-
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
-
Parameters:
-
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default. -
kappa
: Concentration parameter of the von Mises distribution -
a
: General activation of memory items -
c
: Context activation -
s
: Spatial similarity gradient
-
-
Fixed parameters:
-
mu1
= 0 -
mu2
= 0 -
kappa2
= -100
-
-
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log; s = log
-
Default priors:
-
mu1
:-
main
: student_t(1, 0, 1)
-
-
kappa
:-
main
: normal(2, 1) -
effects
: normal(0, 1)
-
-
a
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
c
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
s
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
Version: bsc
-
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
-
Parameters:
-
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default. -
kappa
: Concentration parameter of the von Mises distribution -
c
: Context activation -
s
: Spatial similarity gradient
-
-
Fixed parameters:
-
mu1
= 0 -
mu2
= 0 -
kappa2
= -100
-
-
Default parameter links:
mu1 = tan_half; kappa = log; c = log; s = log
-
Default priors:
-
mu1
:-
main
: student_t(1, 0, 1)
-
-
kappa
:-
main
: normal(2, 1) -
effects
: normal(0, 1)
-
-
c
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
s
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
Version: abc
-
Requirements:
The response vairable should be in radians and represent the angular error relative to the target
The non-target features should be in radians and be centered relative to the target
-
Parameters:
-
mu1
: Location parameter of the von Mises distribution for memory responses (in radians). Fixed internally to 0 by default. -
kappa
: Concentration parameter of the von Mises distribution -
a
: General activation of memory items -
c
: Context activation
-
-
Fixed parameters:
-
mu1
= 0 -
mu2
= 0 -
kappa2
= -100
-
-
Default parameter links:
mu1 = tan_half; kappa = log; a = log; c = log
-
Default priors:
-
mu1
:-
main
: student_t(1, 0, 1)
-
-
kappa
:-
main
: normal(2, 1) -
effects
: normal(0, 1)
-
-
a
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
c
:-
main
: normal(0, 1) -
effects
: normal(0, 1)
-
-
Additionally, all imm models have an internal parameter that is fixed to 0 to allow the model to be identifiable. This parameter is not estimated and is not included in the model formula. The parameter is:
b = "Background activation (internally fixed to 0)"
Value
An object of class bmmodel
Examples
# load data
data <- oberauer_lin_2017
# define formula
ff <- bmmformula(
kappa ~ 0 + set_size,
c ~ 0 + set_size,
a ~ 0 + set_size,
s ~ 0 + set_size
)
# specify the full IMM model with explicit column names for non-target features and distances
# by default this fits the full version of the model
model1 <- imm(resp_error = "dev_rad",
nt_features = paste0('col_nt', 1:7),
nt_distances = paste0('dist_nt', 1:7),
set_size = 'set_size')
# fit the model
fit <- bmm(formula = ff,
data = data,
model = model1,
cores = 4,
backend = 'cmdstanr')
# alternatively specify the IMM model with a regular expression to match non-target features
# this is equivalent to the previous call, but more concise
model2 <- imm(resp_error = "dev_rad",
nt_features = 'col_nt',
nt_distances = 'dist_nt',
set_size = 'set_size',
regex = TRUE)
# fit the model
fit <- bmm(formula = ff,
data = data,
model = model2,
cores = 4,
backend = 'cmdstanr')
# you can also specify the `bsc` or `abc` versions of the model to fit a reduced version
model3 <- imm(resp_error = "dev_rad",
nt_features = 'col_nt',
set_size = 'set_size',
regex = TRUE,
version = 'abc')
fit <- bmm(formula = ff,
data = data,
model = model3,
cores = 4,
backend = 'cmdstanr')