bmem {bmem} | R Documentation |
Mediation analysis based on bootstrap
Description
Mediation analysis based on bootstrap
Usage
bmem(x, ram, indirect, v, method='tsml', ci='bc', cl=.95,
boot=1000, m=10, varphi=.1, st='i', robust=FALSE,
max_it=500, moment=FALSE, ...)
Arguments
x |
A data set |
ram |
RAM path for the mediaiton model |
indirect |
A vector of indirect effec |
v |
Indices of variables used in the mediation model. If omitted, all variables are used. |
method |
|
ci |
|
cl |
Confidence level. Can be a vector. |
boot |
Number of bootstraps |
m |
Number of imputations |
varphi |
Percent of data to be downweighted |
st |
Starting values |
robust |
Robust method |
moment |
Select mean structure or covariance analysis. moment=FALSE, covariance analysis. moment=TRUE, mean and covariance analysis. |
max_it |
Maximum number of iterations in EM |
... |
Other options for |
Details
The indirect effect can be specified using equations such as a*b
, a*b+c
, and a*b*c+d*e+f
. A vector of indirect effects can be used indirect=c('a*b', 'a*b+c')
.
Value
The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.
Author(s)
Zhiyong Zhang and Lijuan Wang
References
Zhang, Z., & Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154-184.