coclusterCategorical {blockcluster} | R Documentation |
Co-Clustering function for categorical data-sets.
Description
This function performs Co-Clustering (simultaneous clustering of rows and columns ) Categorical data-sets using latent block models. It can also be used to perform semi-supervised co-clustering.
Usage
coclusterCategorical(
data,
semisupervised = FALSE,
rowlabels = integer(0),
collabels = integer(0),
model = NULL,
nbcocluster,
strategy = coclusterStrategy(),
a = 1,
b = 1,
nbCore = 1
)
Arguments
data |
Input data as matrix (or list containing data matrix.) | |||||||||
semisupervised |
Boolean value specifying whether to perform semi-supervised co-clustering or not. Make sure to provide row and/or column labels if specified value is true. The default value is false. | |||||||||
rowlabels |
Integer Vector specifying the class of rows. The class number starts from zero. Provide -1 for unknown row class. | |||||||||
collabels |
Integer Vector specifying the class of columns. The class number starts from zero. Provide -1 for unknown column class. | |||||||||
model |
This is the name of model. The following models exists for categorical data:
| |||||||||
nbcocluster |
Integer vector specifying the number of row and column clusters respectively. | |||||||||
strategy |
Object of class | |||||||||
a |
First hyper-parameter in case of Bayesian settings. Default is 1 (no prior). | |||||||||
b |
Second hyper-parameter in case of Bayesian settings. Default is 1 (no prior). | |||||||||
nbCore |
number of thread to use (OpenMP must be available), 0 for all cores. Default value is 1. |
Value
Return an object of BinaryOptions
or ContingencyOptions
or ContinuousOptions
depending on whether the data-type is Binary, Contingency or Continuous
respectively.
Examples
## Simple example with simulated categorical data
## load data
data(categoricaldata)
## usage of coclusterCategorical function in its most simplest form
out<-coclusterCategorical(categoricaldata,nbcocluster=c(3,2))
## Summarize the output results
summary(out)
## Plot the original and Co-clustered data
plot(out)