blatentControl {blatent} | R Documentation |
blatent estimation specifications
Description
Creates control specifics for estimation options for estimating Bayesian latent variable models.
Usage
blatentControl(
calculateDIC = TRUE,
calculateWAIC = TRUE,
defaultPriors = setDefaultPriors(),
defaultInitializeParameters = setDefaultInitializeParameters(),
estimateLatents = TRUE,
estimator = "blatent",
estimatorType = "R",
estimatorLocation = "",
executableName = "",
fileSaveLocation = paste0(getwd(), "/"),
HDPIntervalValue = 0.95,
maxTuneChains = 0,
minTuneChains = 0,
missingMethod = "omit",
nBurnin = 1000,
nChains = 4,
nCores = -1,
nSampled = 1000,
nThin = 5,
nTuneIterations = 0,
parallel = FALSE,
posteriorPredictiveChecks = setPosteriorPredictiveCheckOptions(),
seed = NULL
)
Arguments
calculateDIC |
Calculates DIC following Markov chain. DIC will be marginalized for models with latent variables. Defaults to TRUE. |
calculateWAIC |
Calculates WAIC following Markov chain. WAIC will be marginalized for models with latent variables. Defaults to TRUE. |
defaultPriors |
Sets priors for all parameters that are not specified in priorsList of
|
defaultInitializeParameters |
List of values that sets distributions used to initialize
parameters. Defaults to list set by
|
estimateLatents |
Estimate latent variables summaries for each observation following MCMC estimation. Defaults to |
estimator |
Sets the estimation algorithm to be used. Currently, one option is available that works. The eventual values will be:
|
estimatorType |
Sets location of estimator. Currently, only one option (the default) works.
|
estimatorLocation |
Sets the path to the location of estimator executable, if |
executableName |
Sets the name for the executable file for the estimator. Defaults to
|
fileSaveLocation |
Sets the path for output files used for external estimation routines.
Only used when |
HDPIntervalValue |
Sets the value for all highest density posterior interval parameter summaries. Defaults to |
maxTuneChains |
Sets the maximum number of tuning chains for MCMC sampling algorithm, if needed. Currently,
no Metropolis steps exist in algorithm, so is unused. Defaults to |
minTuneChains |
Sets the minimum number of tuning chains for MCMC sampling algorithm, if needed.
Currently, no Metropolis steps exist in algorithm, so is unused. Defaults to |
missingMethod |
Sets the way missing observed variables are treated within algorithm. Defaults to
|
nBurnin |
Sets the number of burnin iterations. Defaults to |
nChains |
Sets the number of independent Markov chains run by the program. Defaults to |
nCores |
Sets the number of cores used in parallel processing if option
Note: currently, parallel processing is unavailable, so this is unused. |
nSampled |
Sets the number of posterior draws to sample, per chain. Defaults to |
nThin |
Sets the thinning interval, saving only the posterior draws that comes at this value.
Defaults to |
nTuneIterations |
Sets the number of iterations per tuning chain, if needed. Currently,
no Metropolis steps exist in algorithm, so is unused. Defaults to |
parallel |
If |
posteriorPredictiveChecks |
List of values that sets options for posterior predictive model checks.
Defaults to list set by |
seed |
Sets the random number seed for the analysis. Defaults to |
Value
A list of values containing named entries for all arguments shown above.