wclust {biwavelet} | R Documentation |
Compute dissimilarity between multiple wavelet spectra
Description
Compute dissimilarity between multiple wavelet spectra
Usage
wclust(w.arr, quiet = FALSE)
Arguments
w.arr |
|
quiet |
Do not display progress bar. |
Value
Returns a list containing:
diss.mat |
square dissimilarity matrix |
dist.mat |
(lower triangular) distance matrix |
Author(s)
Tarik C. Gouhier (tarik.gouhier@gmail.com)
References
Rouyer, T., J. M. Fromentin, F. Menard, B. Cazelles, K. Briand, R. Pianet, B. Planque, and N. C. Stenseth. 2008. Complex interplays among population dynamics, environmental forcing, and exploitation in fisheries. Proceedings of the National Academy of Sciences 105:5420-5425.
Rouyer, T., J. M. Fromentin, N. C. Stenseth, and B. Cazelles. 2008. Analysing multiple time series and extending significance testing in wavelet analysis. Marine Ecology Progress Series 359:11-23.
Examples
t1 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100)))
t2 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100) + 0.1 * pi))
t3 <- cbind(1:100, rnorm(100)) # white noise
## Compute wavelet spectra
wt.t1 <- wt(t1)
wt.t2 <- wt(t2)
wt.t3 <- wt(t3)
## Store all wavelet spectra into array
w.arr <- array(dim = c(3, NROW(wt.t1$wave), NCOL(wt.t1$wave)))
w.arr[1, , ] <- wt.t1$wave
w.arr[2, , ] <- wt.t2$wave
w.arr[3, , ] <- wt.t3$wave
## Compute dissimilarity and distance matrices
w.arr.dis <- wclust(w.arr)
plot(hclust(w.arr.dis$dist.mat, method = "ward.D"),
sub = "", main = "", ylab = "Dissimilarity", hang = -1)