plot_hp {bite} | R Documentation |
plot Hyper-prior function
Description
This function plots a hyper-prior density function.
Currently supported density function are Uniform, Gamma, Normal, Loggamma and Lognormal.
The resulting function is used during MCMC mcmc_bite
to estimate parameters of priors.
Usage
plot_hp(hpf, col = c("#bfdbf7", "#f49e4c"), border = c("#2e86ab",
"#a31621"), bty = "n", ...)
Arguments
hpf |
name of a density function. Supported density functions are: Uniform, Gamma and Normal |
col |
color of the density area. Can be of size 2 (hpriors for the means, hpriors for the logvars) if a jive object is plotted |
border |
color of the density curve. Can be of size 2 (hpriors for the means, hpriors for the logvars) if a jive object is plotted |
bty , ... |
additional parameters that can be passed to a density function and |
Details
There are three currently implemented density function: Uniform, Gamma and Normal. Each of these densities requires two input parameters and hp.pars must be a vector of two values and cannot be left empty.
Author(s)
Theo Gaboriau
Examples
## Load test data
data(Anolis_traits)
data(Anolis_tree)
my.hp <- hpfun(hpf="Uniform", hp.pars=c(1,2))
plot_hp(my.hp)
my.jive <- make_jive(Anolis_tree, Anolis_traits[,-3], model.priors = list(mean="BM", logvar="OU"))
plot_hp(my.jive, cex.main = .8)