marginal_lik {bite} | R Documentation |
Calculate marginal likelihood by thermodynamic integration (LTI)
Description
Calculate the marginal likelihood from a logfile generated by mcmc_bite
with thermodynamic integration (Lartillot and Philippe, 2006) or stepping stone (Xie et al., 2011).
Usage
marginal_lik(mcmc.log, burnin = 0, method = "SS")
Arguments
mcmc.log |
the output file of a |
burnin |
number or proportion of iteration to delete |
method |
one of "TI" for thermodynamic integration and "SS" for stepping stone integration (the default) |
Value
a length one numeric double giving the marginal likelihood of the model.
Author(s)
Theo Gaboriau and Simon Joly
Examples
## Load test data
data(Anolis_traits)
data(Anolis_tree)
data(Anolis_map)
## Run a MCMC chain with thermodynamic Integration
set.seed(300)
my.jive <- make_jive(Anolis_tree, Anolis_traits[,-3],
model.priors = list(mean="BM", logvar="OU"))
bite_ex <- tempdir()
logfile <- sprintf("%s/my.jive_mcmc_TI.log", bite_ex)
mcmc_bite(my.jive, log.file=logfile, ncat=10, sampling.freq=10,
print.freq=100, ngen=1000, burnin=0)
## import the results in R
res <- read.csv(logfile, header = TRUE, sep = "\t")
mlikTI <- marginal_lik(res, burnin = 0.1, method = "TI")
mlikTI
mlikSS <- marginal_lik(res, burnin = 0.1, method = "SS")
mlikSS
[Package bite version 0.3 Index]