curveEPE {biogeom} | R Documentation |
Drawing the Preston Curve Produced by the the Explicit Preston Equation
Description
curveEPE
is used to draw the Preston curve that is produced by the explicit Preston equation.
Usage
curveEPE(P, np = 5000, simpver = NULL,
fig.opt = FALSE, deform.fun = NULL, Par = NULL,
xlim = NULL, ylim = NULL, unit = NULL, main="")
Arguments
P |
the three location parameters and the parameters of the explicit Preston equation or one of its simplified versions. |
np |
the number of data points on the Preston curve. |
simpver |
an optional argument to use the simplfied version of the explicit Preston equation. |
fig.opt |
an optional argument to draw the Preston curve. |
deform.fun |
the deformation function used to describe the deviation from a theoretical Preston curve. |
Par |
the parameter(s) of the deformation function. |
xlim |
the range of the |
ylim |
the range of the |
unit |
the units of the |
main |
the main title of the figure. |
Details
The first three elements of P
are location parameters. The first two are the planar coordinates of the transferred origin,
and the third is the angle between the major axis of the curve and the x
-axis. Here, the major axis is a straight line through
the two ends of an egg's profile (i.e., the mid-line of the egg's profile). The other arguments in P
(except these first three location parameters), and simpver
should correspond to those of P
in EPE
.
deform.fun
should take the form as: deform.fun <- function(Par, z){...}
, where z
is
a two-dimensional matrix related to the x
and y
values.
And the return value of deform.fun
should be a list
with two variables x
and y
.
Value
x |
the |
y |
the |
Note
When the rotation angle is zero (i.e., the third element in P
is zero), np
data points
are distributed counterclockwise on the Preston curve from the rightmost end of the egg's profile to itself.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-
182.
Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023)
A simple way to calculate the volume and surface area of avian eggs.
Annals of the New York Academy of Sciences 1524, 118-
131. doi:10.1111/nyas.15000
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H.,
Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural
shapes. Annals of the New York Academy of Sciences 1516, 123-
134. doi:10.1111/nyas.14862
Shi, P., Wang, L., Quinn, B.K., Gielis, J. (2023) A new program to estimate the parameters of Preston's equation, a general formula for describing the egg shape of birds. Symmetry 15, 231. doi:10.3390/sym15010231
Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. Journal of Theoretical Biology
106, 239-
243. doi:10.1016/0022-5193(84)90021-3
See Also
Examples
Para1 <- c(0, 0, 0, 10, 6, 0.325, -0.0415)
curveEPE(P=Para1, simpver=1, fig.opt=TRUE)
Para2 <- c(0, 0, pi, 10, 6, -0.325, -0.0415)
curveEPE(P=Para2, simpver=1, fig.opt=TRUE)
Para3 <- c(0, 0, 0, 10, 6, 0.325, -0.0415, 0.2)
curveEPE(P=Para3, simpver=NULL, fig.opt=TRUE)
Para4 <- c(0, 0, pi, 10, 6, -0.325, -0.0415, 0.2)
curveEPE(P=Para4, simpver=NULL, fig.opt=TRUE)
Para5 <- c(0, 0, pi/4, 10, 6, 0.325, -0.0415)
curveEPE(P=Para5, simpver=1,
fig.opt=TRUE, main="A rotated egg shape")
# There is an example that introduces a deformation function in the egg-shape equation
myfun <- function(Par, z){
x <- z[,1]
y <- z[,2]
k1 <- Par[1]
k2 <- Par[2]
y <- y - k1*(y+k2)^2
list(x=x, y=y)
}
deform.op <- curveEPE(P=Para1, np=5000, simpver=1,
fig.opt=TRUE, deform.fun=myfun, Par=c(0.05, 8))
graphics.off()