VolumeEPE {biogeom} | R Documentation |
Calculation of the Volume of An Egg Based on the Explicit Preston Equation
Description
VolumeEPE
is used to calculate the volume of an egg that follows the explicit Preston equation.
Usage
VolumeEPE(P, simpver = NULL)
Arguments
P |
the parameters of the explicit Preston equation or one of its simplified versions. |
simpver |
an optional argument to use the simplified version of the explicit Preston equation. |
Details
When simpver = NULL
, the volume formula (V
) of the explicit Preston equation is selected:
V(x) = \frac{4\,\pi}{315}a\,b^{2}\left(105+21\,c_{1}^{2}+42\,c_{2}+9\,c_{2}^2+18\,c_{1}\,c_{3}+5\,c_{3}^2\right),
where P
has five parameters: a
, b
, c_{1}
, c_{2}
, and c_{3}
.
\quad
When simpver = 1
, the volume formula of the simplified version 1 is selected:
V(x) = \frac{4\,\pi}{315}a\,b^{2}\left(105+21\,c_{1}^{2}+42\,c_{2}+9\,c_{2}^2\right),
where P
has four parameters: a
, b
, c_{1}
, and c_{2}
.
\quad
When simpver = 2
, the volume formula of the simplified version 2 is selected:
V(x) = \frac{4\,\pi}{315}a\,b^{2}\left(105+21\,c_{1}^{2}\right),
where P
has three parameters: a
, b
, and c_{1}
.
\quad
When simpver = 3
, the volume formula of the simplified version 3 is selected:
V(x) = \frac{4\,\pi}{315}a\,b^{2}\left(105+42\,c_{2}+9\,c_{2}^2\right),
where P
has three parameters: a
, b
, and c_{2}
.
Note
The argument P
in the VolumeEPE
function has the same parameters, as those in the
EPE
function.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Narushin, V.G., Romanov, M.N., Mishra, B., Griffin, D.K. (2022) Mathematical progression of
avian egg shape with associated area and volume determinations.
Annals of the New York Academy of Sciences 1513, 65-
78. doi:10.1111/nyas.14771
Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023)
A simple way to calculate the volume and surface area of avian eggs.
Annals of the New York Academy of Sciences 1524, 118-
131. doi:10.1111/nyas.15000
See Also
Examples
Par3 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287)
VolumeEPE(P=Par3, simpver=NULL)
# Test the case when simpver = NULL
a <- Par3[1]
b <- Par3[2]
c1 <- Par3[3]
c2 <- Par3[4]
c3 <- Par3[5]
pi*4/315*a*b^2*(105+21*c1^2+42*c2+9*c2^2+18*c1*c3+5*c3^2)
myfun <- function(x){
pi*EPE(P=Par3, x=x, simpver=NULL)^2
}
integrate(myfun, -4.27, 4.27)$value