TSE {biogeom} | R Documentation |
The Todd-Smart Equation (TSE)
Description
TSE
is used to calculate y
values at given x
values using
the Todd and Smart's re-expression of Preston's universal egg shape.
Usage
TSE(P, x, simpver = NULL)
Arguments
P |
the parameters of the original Todd-Smart equation or one of its simplified versions. |
x |
the given |
simpver |
an optional argument to use the simplified version of the original Todd-Smart equation. |
Details
When simpver = NULL
, the original Preston equation is selected:
y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2} + d_{3}z_{3},
where
z_{0}=\sqrt{1-x^2},
z_{1}=x\sqrt{1-x^2},
z_{2}=x^{2}\sqrt{1-x^2},
z_{3}=x^{3}\sqrt{1-x^2}.
Here, x
and y
represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve;
d_{0}
, d_{1}
, d_{2}
, and d_{3}
are parameters to be estimated.
\quad
When simpver = 1
, the simplified version 1 is selected:
y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2},
where x
and y
represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve;
d_{0}
, d_{1}
, and d_{2}
are parameters to be estimated.
\quad
When simpver = 2
, the simplified version 2 is selected:
y = d_{0}z_{0} + d_{1}z_{1},
where x
and y
represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve;
d_{0}
, and d_{1}
are parameters to be estimated.
\quad
When simpver = 3
, the simplified version 3 is selected:
y = d_{0}z_{0} + d_{2}z_{2},
where x
and y
represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve;
d_{0}
, and d_{2}
are parameters to be estimated.
Value
The y
values predicted by the Todd-Smart equation.
Note
Here, x
and y
in the Todd-Smart equation are actually equal to y/a
and x/a
, respectively, in the Preston equation (See PE
for details).
Since a
represents half the egg length, this means that the egg length is fixed to be 2,
and the maximum egg width is correspondingly adjusted to keep the same scale.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. Ornithology 139, ukac028. doi:10.1093/ornithology/ukac028
Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying
the shape of birds' eggs. Ecology and Evolution 8, 9728-
9738. doi:10.1002/ece3.4412
Nelder, J.A., Mead, R. (1965). A simplex method for function minimization.
Computer Journal 7, 308-
313. doi:10.1093/comjnl/7.4.308
Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-
182.
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H.,
Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural
shapes. Annals of the New York Academy of Sciences 1516, 123-
134. doi:10.1111/nyas.14862
Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. Journal of Theoretical Biology
106, 239-
243. doi:10.1016/0022-5193(84)90021-3
See Also
Examples
Par <- c(0.695320398, -0.210538656, -0.070373518, 0.116839895)
xb1 <- seq(-1, 1, len=20000)
yb1 <- TSE(P=Par, x=xb1)
xb2 <- seq(1, -1, len=20000)
yb2 <- -TSE(P=Par, x=xb2)
dev.new()
plot(xb1, yb1, asp=1, type="l", col=2, ylim=c(-1, 1), cex.lab=1.5, cex.axis=1.5,
xlab=expression(italic(x)), ylab=expression(italic(y)))
lines(xb2, yb2, col=4)
graphics.off()