TSE {biogeom}R Documentation

The Todd-Smart Equation (TSE)

Description

TSE is used to calculate yy values at given xx values using the Todd and Smart's re-expression of Preston's universal egg shape.

Usage

TSE(P, x, simpver = NULL)

Arguments

P

the parameters of the original Todd-Smart equation or one of its simplified versions.

x

the given xx values ranging from -1 to 1.

simpver

an optional argument to use the simplified version of the original Todd-Smart equation.

Details

When simpver = NULL, the original Preston equation is selected:

y=d0z0+d1z1+d2z2+d3z3,y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2} + d_{3}z_{3},

where

z0=1x2,z_{0}=\sqrt{1-x^2},

z1=x1x2,z_{1}=x\sqrt{1-x^2},

z2=x21x2,z_{2}=x^{2}\sqrt{1-x^2},

z3=x31x2.z_{3}=x^{3}\sqrt{1-x^2}.

Here, xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, d1d_{1}, d2d_{2}, and d3d_{3} are parameters to be estimated.

\quad When simpver = 1, the simplified version 1 is selected:

y=d0z0+d1z1+d2z2,y = d_{0}z_{0} + d_{1}z_{1} + d_{2}z_{2},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, d1d_{1}, and d2d_{2} are parameters to be estimated.

\quad When simpver = 2, the simplified version 2 is selected:

y=d0z0+d1z1,y = d_{0}z_{0} + d_{1}z_{1},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, and d1d_{1} are parameters to be estimated.

\quad When simpver = 3, the simplified version 3 is selected:

y=d0z0+d2z2,y = d_{0}z_{0} + d_{2}z_{2},

where xx and yy represent the abscissa and ordinate of an arbitrary point on the Todd-Smart curve; d0d_{0}, and d2d_{2} are parameters to be estimated.

Value

The yy values predicted by the Todd-Smart equation.

Note

Here, xx and yy in the Todd-Smart equation are actually equal to y/ay/a and x/ax/a, respectively, in the Preston equation (See PE for details). Since aa represents half the egg length, this means that the egg length is fixed to be 2, and the maximum egg width is correspondingly adjusted to keep the same scale.

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

References

Biggins, J.D., Montgomeries, R.M., Thompson, J.E., Birkhead, T.R. (2022) Preston's universal formula for avian egg shape. Ornithology 139, ukac028. doi:10.1093/ornithology/ukac028

Biggins, J.D., Thompson, J.E., Birkhead, T.R. (2018) Accurately quantifying the shape of birds' eggs. Ecology and Evolution 8, 9728-9738. doi:10.1002/ece3.4412

Nelder, J.A., Mead, R. (1965). A simplex method for function minimization. Computer Journal 7, 308-313. doi:10.1093/comjnl/7.4.308

Preston, F.W. (1953) The shapes of birds' eggs. The Auk 70, 160-182.

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123-134. doi:10.1111/nyas.14862

Todd, P.H., Smart, I.H.M. (1984) The shape of birds' eggs. Journal of Theoretical Biology 106, 239-243. doi:10.1016/0022-5193(84)90021-3

See Also

lmPE, PE

Examples

  Par <- c(0.695320398, -0.210538656, -0.070373518, 0.116839895)
  xb1 <- seq(-1, 1, len=20000)
  yb1 <- TSE(P=Par, x=xb1)
  xb2 <- seq(1, -1, len=20000)
  yb2 <- -TSE(P=Par, x=xb2)

  dev.new()
  plot(xb1, yb1, asp=1, type="l", col=2, ylim=c(-1, 1), cex.lab=1.5, cex.axis=1.5, 
    xlab=expression(italic(x)), ylab=expression(italic(y)))
  lines(xb2, yb2, col=4)

  graphics.off()

[Package biogeom version 1.4.3 Index]