SarabiaE {biogeom} | R Documentation |
Sarabia Equation
Description
SarabiaE
is used to calculate y
values at given x
values using
the Sarabia equation. The equation describes the y
coordinates of the Lorenz curve.
Usage
SarabiaE(P, x)
Arguments
P |
the parameters of the Sarabia equation. |
x |
the given |
Details
y = \left(1-\lambda+\eta\right)x+\lambda x^{a_1 + 1}-\eta \left[1-\left(1-x\right)^{a_2 + 1}\right].
Here, x
and y
represent the independent and dependent variables, respectively;
and \lambda
, \eta
, a_1
and a_2
are constants to be estimated, where
a_1 \ge 0
, a_2 + 1 \ge 0
, \eta\,a_2 + \lambda \le 1
, \lambda \ge 0
, and \eta\,a_2 \ge 0
.
There are four elements in P
, representing
the values of \lambda
, \eta
, a_1
and a_2
, respectively.
Value
The y
values predicted by the Sarabia equation.
Note
The numerical range of x
should range between 0 and 1.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Sarabia, J.-M. (1997) A hierarchy of Lorenz curves based on the generalized Tukey's lambda distribution.
Econometric Reviews 16, 305-
320. doi:10.1080/07474939708800389
Sitthiyot, T., Holasut, K. (2023) A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality. Scientific Reports 13, 4729. doi:10.1038/s41598-023-31827-x
See Also
fitLorenz
, MPerformanceE
, SCSE
, SHE
Examples
X1 <- seq(0, 1, len=2000)
Pa1 <- c(0.295, 101.485, 0.705, 0.003762)
Y1 <- SarabiaE(P=Pa1, x=X1)
dev.new()
plot( X1, Y1, cex.lab=1.5, cex.axis=1.5, type="l", asp=1, xaxs="i",
yaxs="i", xlim=c(0, 1), ylim=c(0, 1),
xlab="Cumulative proportion of the number of infructescences",
ylab="Cumulative proportion of the infructescence length" )
graphics.off()