SarabiaE {biogeom}R Documentation

Sarabia Equation

Description

SarabiaE is used to calculate yy values at given xx values using the Sarabia equation. The equation describes the yy coordinates of the Lorenz curve.

Usage

SarabiaE(P, x)

Arguments

P

the parameters of the Sarabia equation.

x

the given xx values ranging between 0 and 1.

Details

y=(1λ+η)x+λxa1+1η[1(1x)a2+1].y = \left(1-\lambda+\eta\right)x+\lambda x^{a_1 + 1}-\eta \left[1-\left(1-x\right)^{a_2 + 1}\right].

Here, xx and yy represent the independent and dependent variables, respectively; and λ\lambda, η\eta, a1a_1 and a2a_2 are constants to be estimated, where a10a_1 \ge 0, a2+10a_2 + 1 \ge 0, ηa2+λ1\eta\,a_2 + \lambda \le 1, λ0\lambda \ge 0, and ηa20\eta\,a_2 \ge 0. There are four elements in P, representing the values of λ\lambda, η\eta, a1a_1 and a2a_2, respectively.

Value

The yy values predicted by the Sarabia equation.

Note

The numerical range of xx should range between 0 and 1.

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

References

Sarabia, J.-M. (1997) A hierarchy of Lorenz curves based on the generalized Tukey's lambda distribution. Econometric Reviews 16, 305-320. doi:10.1080/07474939708800389

Sitthiyot, T., Holasut, K. (2023) A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality. Scientific Reports 13, 4729. doi:10.1038/s41598-023-31827-x

See Also

fitLorenz, MPerformanceE, SCSE, SHE

Examples

X1  <- seq(0, 1, len=2000)
Pa1 <- c(0.295, 101.485, 0.705, 0.003762)
Y1  <- SarabiaE(P=Pa1, x=X1)

dev.new()
plot( X1, Y1, cex.lab=1.5, cex.axis=1.5, type="l", asp=1, xaxs="i", 
      yaxs="i", xlim=c(0, 1), ylim=c(0, 1), 
      xlab="Cumulative proportion of the number of infructescences", 
      ylab="Cumulative proportion of the infructescence length" )

graphics.off()

[Package biogeom version 1.4.3 Index]