MbetaE {biogeom}R Documentation

Modified Beta Equation

Description

MbetaE is used to calculate yy values at given xx values using the modified beta equation or one of its simplified versions.

Usage

MbetaE(P, x, simpver = 1)

Arguments

P

the parameters of the modified beta equation or one of its simplified versions.

x

the given xx values.

simpver

an optional argument to use the simplified version of the modified beta equation.

Details

When simpver = NULL, the modified beta equation is selected:

\mboxifx(xmin, xmax),\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=yopt[(xmaxxxmaxxopt)(xxminxoptxmin)xoptxminxmaxxopt]δ;y = y_{\mathrm{opt}}{ \left[\left(\frac{x_{\mathrm{max}}-x}{x_{\mathrm{max}}-x_{\mathrm{opt}}}\right)\left(\frac{x-x_{\mathrm{min}}}{x_{\mathrm{opt}}-x_{\mathrm{min}}}\right)^{\frac{x_{\mathrm{opt}}-x_{\mathrm{min}}}{x_{\mathrm{max}}-x_{\mathrm{opt}}}} \right] }^{\delta};

\mboxifx(xmin, xmax),\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

Here, xx and yy represent the independent and dependent variables, respectively; yopty_{\mathrm{opt}}, xoptx_{\mathrm{opt}}, xminx_{\mathrm{min}}, xmaxx_{\mathrm{max}}, and δ\delta are constants to be estimated; yopty_{\mathrm{opt}} represents the maximum yy, and xoptx_{\mathrm{opt}} is the xx value associated with the maximum yy (i.e., yopty_{\mathrm{opt}}); and xminx_{\mathrm{min}} and xmaxx_{\mathrm{max}} represent the lower and upper intersections between the curve and the xx-axis. yy is defined as 0 when x<xminx < x_{\mathrm{min}} or x>xmaxx > x_{\mathrm{max}}. There are five elements in P, representing the values of yopty_{\mathrm{opt}}, xoptx_{\mathrm{opt}}, xminx_{\mathrm{min}}, xmaxx_{\mathrm{max}}, and δ\delta, respectively.

\quad When simpver = 1, the simplified version 1 is selected:

\mboxifx(0, xmax),\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},

y=yopt[(xmaxxxmaxxopt)(xxopt)xoptxmaxxopt]δ;y = y_{\mathrm{opt}}{ \left[\left(\frac{x_{\mathrm{max}}-x}{x_{\mathrm{max}}-x_{\mathrm{opt}}}\right)\left(\frac{x}{x_{\mathrm{opt}}}\right)^{\frac{x_{\mathrm{opt}}}{x_{\mathrm{max}}-x_{\mathrm{opt}}}} \right] }^{\delta};

\mboxifx(0, xmax),\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are four elements in P, representing the values of yopty_{\mathrm{opt}}, xoptx_{\mathrm{opt}}, xmaxx_{\mathrm{max}}, and δ\delta, respectively.

\quad When simpver = 2, the simplified version 2 is selected:

\mboxifx(xmin, xmax),\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=yopt(xmaxxxmaxxopt)(xxminxoptxmin)xoptxminxmaxxopt;y = y_{\mathrm{opt}}{ \left(\frac{x_{\mathrm{max}}-x}{x_{\mathrm{max}}-x_{\mathrm{opt}}}\right)\left(\frac{x-x_{\mathrm{min}}}{x_{\mathrm{opt}}-x_{\mathrm{min}}}\right)^{\frac{x_{\mathrm{opt}}-x_{\mathrm{min}}}{x_{\mathrm{max}}-x_{\mathrm{opt}}}} };

\mboxifx(xmin, xmax),\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are four elements in P, representing the values of yopty_{\mathrm{opt}}, xoptx_{\mathrm{opt}}, xminx_{\mathrm{min}}, and xmaxx_{\mathrm{max}}, respectively.

\quad When simpver = 3, the simplified version 3 is selected:

\mboxifx(0, xmax),\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},

y=yopt(xmaxxxmaxxopt)(xxopt)xoptxmaxxopt;y = y_{\mathrm{opt}}{ \left(\frac{x_{\mathrm{max}}-x}{x_{\mathrm{max}}-x_{\mathrm{opt}}}\right)\left(\frac{x}{x_{\mathrm{opt}}}\right)^{\frac{x_{\mathrm{opt}}}{x_{\mathrm{max}}-x_{\mathrm{opt}}}} };

\mboxifx(0, xmax),\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are three elements in P, representing the values of yopty_{\mathrm{opt}}, xoptx_{\mathrm{opt}}, and xmaxx_{\mathrm{max}}, respectively.

Value

The yy values predicted by the modified beta equation or one of its simplified versions.

Note

We have added a parameter δ\delta in the original beta equation (i.e., simpver = 2) to increase the flexibility for data fitting.

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

References

Shi, P., Fan, M., Ratkowsky, D.A., Huang, J., Wu, H., Chen, L., Fang, S., Zhang, C. (2017) Comparison of two ontogenetic growth equations for animals and plants. Ecological Modelling 349, 1-10. doi:10.1016/j.ecolmodel.2017.01.012

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123-134. doi:10.1111/nyas.14862

See Also

areaovate, curveovate, fitovate, fitsigmoid, MBriereE, MLRFE, MPerformanceE, sigmoid

Examples

x1   <- seq(-5, 15, len=2000)
Par1 <- c(3, 3, 10, 2)
y1   <- MbetaE(P=Par1, x=x1, simpver=1)

dev.new()
plot( x1, y1,cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic(x)), ylab=expression(italic(y)) )
 
graphics.off()

[Package biogeom version 1.4.3 Index]