MPerformanceE {biogeom}R Documentation

Modified Performance Equation

Description

MPerformanceE is used to calculate yy values at given xx values using the modified performance equation or one of its simplified versions.

Usage

MPerformanceE(P, x, simpver = 1)

Arguments

P

the parameters of the modified performance equation or one of its simplified versions.

x

the given xx values.

simpver

an optional argument to use the simplified version of the modified performance equation.

Details

When simpver = NULL, the modified performance equation is selected:

\mboxifx(xmin, xmax),\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=c(1eK1(xxmin))a(1eK2(xxmax))b;y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};

\mboxifx(xmin, xmax),\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

Here, xx and yy represent the independent and dependent variables, respectively; and cc, K1K_{1}, K2K_{2}, xminx_{\mathrm{min}}, xmaxx_{\mathrm{max}}, aa, and bb are constants to be estimated, where xminx_{\mathrm{min}} and xmaxx_{\mathrm{max}} represents the lower and upper intersections between the curve and the xx-axis. yy is defined as 0 when x<xminx < x_{\mathrm{min}} or x>xmaxx > x_{\mathrm{max}}. There are seven elements in P, representing the values of cc, K1K_{1}, K2K_{2}, xminx_{\mathrm{min}}, xmaxx_{\mathrm{max}}, aa, and bb, respectively.

\quad When simpver = 1, the simplified version 1 is selected:

\mboxifx(0, xmax),\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},

y=c(1eK1x)a(1eK2(xxmax))b;y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};

\mboxifx(0, xmax),\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are six elements in P, representing the values of cc, K1K_{1}, K2K_{2}, xmaxx_{\mathrm{max}}, aa, and bb respectively.

\quad When simpver = 2, the simplified version 2 is selected:

\mboxifx(xmin, xmax),\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=c(1eK1(xxmin))(1eK2(xxmax));y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);

\mboxifx(xmin, xmax),\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are five elements in P representing the values of cc, K1K_{1}, K2K_{2}, xminx_{\mathrm{min}}, and xmaxx_{\mathrm{max}}, respectively.

\quad When simpver = 3, the simplified version 3 is selected:

\mboxifx(0, xmax),\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},

y=c(1eK1x)(1eK2(xxmax));y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);

\mboxifx(0, xmax),\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},

y=0.y = 0.

There are four elements in P representing the values of cc, K1K_{1}, K2K_{2}, and xmaxx_{\mathrm{max}}, respectively.

\quad When simpver = 4, the simplified version 4 is selected:

\mboxifx(0, 2),\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},

y=c(1eK1x)a(1eK2(x2))b;y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right)^{b};

\mboxifx(0, 2),\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},

y=0.y = 0.

There are five elements in P, representing the values of cc, K1K_{1}, K2K_{2}, aa, and bb, respectively.

\quad When simpver = 5, the simplified version 5 is selected:

\mboxifx(0, 2),\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},

y=c(1eK1x)(1eK2(x2));y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right);

\mboxifx(0, 2),\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},

y=0.y = 0.

There are three elements in P, representing the values of cc, K1K_{1}, and K2K_{2}, respectively.

Value

The yy values predicted by the modified performance equation or one of its simplified versions.

Note

We have added two parameters aa and bb in the original performance equation (i.e., simpver = 2) to increase the flexibility for data fitting. The cases of simpver = 4 and simpver = 5 are used to describe the rotated and right-shifted Lorenz curve (see Lian et al. [2023] for details).

Author(s)

Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.

References

Huey, R.B., Stevenson, R.D. (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist 19, 357-366. doi:10.1093/icb/19.1.357

Lian, M., Shi, P., Zhang, L., Yao, W., Gielis, J., Niklas, K.J. (2023) A generalized performance equation and its application in measuring the Gini index of leaf size inequality. Trees - Structure and Function 37, 1555-1565. doi:10.1007/s00468-023-02448-8

Shi, P., Ge, F., Sun, Y., Chen, C. (2011) A simple model for describing the effect of temperature on insect developmental rate. Journal of Asia-Pacific Entomology 14, 15-20. doi:10.1016/j.aspen.2010.11.008

Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H., Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural shapes. Annals of the New York Academy of Sciences 1516, 123-134. doi:10.1111/nyas.14862

See Also

areaovate, curveovate, fitLorenz, fitovate, fitsigmoid, MbetaE, MBriereE, MLRFE, sigmoid

Examples

x4   <- seq(0, 40, len=2000)
Par4 <- c(0.117, 0.090, 0.255, 5, 35, 1, 1)
y4   <- MPerformanceE(P=Par4, x=x4, simpver=NULL)

dev.new()
plot( x4, y4, cex.lab=1.5, cex.axis=1.5, type="l",
      xlab=expression(italic(x)), ylab=expression(italic(y)) )

graphics.off()

[Package biogeom version 1.4.3 Index]