MPerformanceE {biogeom} | R Documentation |
Modified Performance Equation
Description
MPerformanceE
is used to calculate y
values at given x
values using
the modified performance equation or one of its simplified versions.
Usage
MPerformanceE(P, x, simpver = 1)
Arguments
P |
the parameters of the modified performance equation or one of its simplified versions. |
x |
the given |
simpver |
an optional argument to use the simplified version of the modified performance equation. |
Details
When simpver = NULL
, the modified performance equation is selected:
\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};
\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = 0.
Here, x
and y
represent the independent and dependent variables, respectively;
and c
, K_{1}
, K_{2}
, x_{\mathrm{min}}
, x_{\mathrm{max}}
, a
,
and b
are constants to be estimated,
where x_{\mathrm{min}}
and x_{\mathrm{max}}
represents the
lower and upper intersections between the curve and the x
-axis. y
is defined as 0
when x < x_{\mathrm{min}}
or x > x_{\mathrm{max}}
. There are seven elements in P
, representing
the values of c
, K_{1}
, K_{2}
, x_{\mathrm{min}}
, x_{\mathrm{max}}
, a
, and b
, respectively.
\quad
When simpver = 1
, the simplified version 1 is selected:
\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},
y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right)^{b};
\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},
y = 0.
There are six elements in P
, representing
the values of c
, K_{1}
, K_{2}
, x_{\mathrm{max}}
, a
, and b
respectively.
\quad
When simpver = 2
, the simplified version 2 is selected:
\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = c\left(1-e^{-K_{1}\left(x-x_{\mathrm{min}}\right)}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);
\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = 0.
There are five elements in P
representing
the values of c
, K_{1}
, K_{2}
, x_{\mathrm{min}}
, and x_{\mathrm{max}}
, respectively.
\quad
When simpver = 3
, the simplified version 3 is selected:
\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},
y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-x_{\mathrm{max}}\right)}\right);
\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},
y = 0.
There are four elements in P
representing
the values of c
, K_{1}
, K_{2}
, and x_{\mathrm{max}}
, respectively.
\quad
When simpver = 4
, the simplified version 4 is selected:
\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},
y = c\left(1-e^{-K_{1}x}\right)^{a}\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right)^{b};
\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},
y = 0.
There are five elements in P
, representing
the values of c
, K_{1}
, K_{2}
, a
, and b
, respectively.
\quad
When simpver = 5
, the simplified version 5 is selected:
\mbox{if } x \in{\left(0, \ \sqrt{2}\right)},
y = c\left(1-e^{-K_{1}x}\right)\left(1-e^{K_{2}\left(x-\sqrt{2}\right)}\right);
\mbox{if } x \notin{\left(0, \ \sqrt{2}\right)},
y = 0.
There are three elements in P
, representing
the values of c
, K_{1}
, and K_{2}
, respectively.
Value
The y
values predicted by the modified performance equation or one of its simplified versions.
Note
We have added two parameters a
and b
in the original performance
equation (i.e., simpver = 2
) to increase the flexibility for data fitting.
The cases of simpver = 4
and simpver = 5
are used to describe the rotated and right-shifted
Lorenz curve (see Lian et al. [2023] for details).
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Huey, R.B., Stevenson, R.D. (1979) Integrating thermal physiology and ecology of ectotherms:
a discussion of approaches. American Zoologist 19, 357-
366. doi:10.1093/icb/19.1.357
Lian, M., Shi, P., Zhang, L., Yao, W., Gielis, J., Niklas, K.J. (2023) A generalized performance equation
and its application in measuring the Gini index of leaf size inequality.
Trees -
Structure and Function 37, 1555-
1565. doi:10.1007/s00468-023-02448-8
Shi, P., Ge, F., Sun, Y., Chen, C. (2011) A simple model for describing
the effect of temperature on insect developmental rate. Journal of Asia-Pacific Entomology
14, 15-
20. doi:10.1016/j.aspen.2010.11.008
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H.,
Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural
shapes. Annals of the New York Academy of Sciences 1516, 123-
134. doi:10.1111/nyas.14862
See Also
areaovate
, curveovate
, fitLorenz
,
fitovate
, fitsigmoid
, MbetaE
,
MBriereE
, MLRFE
, sigmoid
Examples
x4 <- seq(0, 40, len=2000)
Par4 <- c(0.117, 0.090, 0.255, 5, 35, 1, 1)
y4 <- MPerformanceE(P=Par4, x=x4, simpver=NULL)
dev.new()
plot( x4, y4, cex.lab=1.5, cex.axis=1.5, type="l",
xlab=expression(italic(x)), ylab=expression(italic(y)) )
graphics.off()