MBriereE {biogeom} | R Documentation |
Modified Briere Equation
Description
MBriereE
is used to calculate y
values at given x
values using
the modified Brière equation or one of its simplified versions.
Usage
MBriereE(P, x, simpver = 1)
Arguments
P |
the parameters of the modified Brière equation or one of its simplified versions. |
x |
the given |
simpver |
an optional argument to use the simplified version of the modified Brière equation. |
Details
When simpver = NULL
, the modified Brière equation is selected:
\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = a\left|x(x-x_{\mathrm{min}})(x_{\mathrm{max}}-x)^{1/m}\right|^{\delta};
\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = 0.
Here, x
and y
represent the independent and dependent variables, respectively;
and a
, m
, x_{\mathrm{min}}
, x_{\mathrm{max}}
, and \delta
are constants to be estimated,
where x_{\mathrm{min}}
and x_{\mathrm{max}}
represents the
lower and upper intersections between the curve and the x
-axis. y
is defined as 0
when x < x_{\mathrm{min}}
or x > x_{\mathrm{max}}
. There are five elements in P
, representing
the values of a
, m
, x_{\mathrm{min}}
, x_{\mathrm{max}}
, and \delta
, respectively.
\quad
When simpver = 1
, the simplified version 1 is selected:
\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},
y = a\left|x^{2}(x_{\mathrm{max}}-x)^{1/m}\right|^{\delta};
\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},
y = 0.
There are four elements in P
, representing
the values of a
, m
, x_{\mathrm{max}}
, and \delta
, respectively.
\quad
When simpver = 2
, the simplified version 2 is selected:
\mbox{if } x \in{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = ax(x-x_{\mathrm{min}})(x_{\mathrm{max}}-x)^{1/m};
\mbox{if } x \notin{\left(x_{\mathrm{min}}, \ x_{\mathrm{max}}\right)},
y = 0.
There are four elements in P
representing
the values of a
, m
, x_{\mathrm{min}}
, and x_{\mathrm{max}}
, respectively.
\quad
When simpver = 3
, the simplified version 3 is selected:
\mbox{if } x \in{\left(0, \ x_{\mathrm{max}}\right)},
y = ax^{2}(x_{\mathrm{max}}-x)^{1/m};
\mbox{if } x \notin{\left(0, \ x_{\mathrm{max}}\right)},
y = 0.
There are three elements in P
representing
the values of a
, m
, and x_{\mathrm{max}}
, respectively.
Value
The y
values predicted by the modified Brière equation or one of its simplified versions.
Note
We have added a parameter \delta
in the original Brière equation (i.e., simpver = 2
) to increase the flexibility for data fitting.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Brière, J.-F., Pracros, P, Le Roux, A.-Y., Pierre, J.-S. (1999) A novel rate
model of temperature-dependent development for arthropods. Environmental
Entomology 28, 22-
29. doi:10.1093/ee/28.1.22
Cao, L., Shi, P., Li, L., Chen, G. (2019) A new flexible sigmoidal growth model. Symmetry 11, 204. doi:10.3390/sym11020204
Jin, J., Quinn, B.K., Shi, P. (2022) The modified Brière equation and its applications. Plants 11, 1769. doi:10.3390/plants11131769
Shi, P., Gielis, J., Quinn, B.K., Niklas, K.J., Ratkowsky, D.A., Schrader, J., Ruan, H.,
Wang, L., Niinemets, Ü. (2022) 'biogeom': An R package for simulating and fitting natural
shapes. Annals of the New York Academy of Sciences 1516, 123-
134. doi:10.1111/nyas.14862
See Also
areaovate
, curveovate
, fitovate
, fitsigmoid
,
MbetaE
, MLRFE
, MPerformanceE
, sigmoid
Examples
x2 <- seq(-5, 15, len=2000)
Par2 <- c(0.01, 3, 0, 10, 1)
y2 <- MBriereE(P=Par2, x=x2, simpver=NULL)
dev.new()
plot( x2, y2, cex.lab=1.5, cex.axis=1.5, type="l",
xlab=expression(italic(x)), ylab=expression(italic(y)) )
graphics.off()