DEPE {biogeom} | R Documentation |
Calculation of the First-Order Derivative of the Explicit Preston Equation
Description
DEPE
is used to calculate the first-order derivative of the explicit Preston equation at a given x-value.
Usage
DEPE(P, x, simpver = NULL)
Arguments
P |
the parameters of the explicit Preston equation or one of its simplified versions. |
x |
the x-value used in the explicit Preston equation. |
simpver |
an optional argument to use the simplified version of the explicit Preston equation. |
Details
When simpver = NULL
, the first-order derivative of
the explicit Preston equation at a given x-value is selected:
f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x+
a^2\left(3\,c_{3}-2\,c_{1}\right)x^{2}-3\,a\,c_{2}x^3-4\,c_{3}\,x^{4}\right]}{a^4\sqrt{a^2-x^2}},
where P
has five parameters: a
, b
, c_{1}
, c_{2}
, and c_{3}
.
\quad
When simpver = 1
, the first-order derivative of the simplified version 1 is selected:
f(x)=\frac{b\left[a^{4}\,c_{1}+a^{3}\left(2\,c_{2}-1\right)x-
2\,a^2\,c_{1}\,x^{2}-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}},
where P
has four parameters: a
, b
, c_{1}
, and c_{2}
.
\quad
When simpver = 2
, the first-order derivative of the simplified version 2 is selected:
f(x)=\frac{b\left[a^{4}\,c_{1}-a^{3}\,x-
2\,a^2\,c_{1}\,x^{2}\right]}{a^4\sqrt{a^2-x^2}},
where P
has three parameters: a
, b
, and c_{1}
.
\quad
When simpver = 3
, the first-order derivative of the simplified version 3 is selected:
f(x)=\frac{b\left[a^{3}\left(2\,c_{2}-1\right)x-3\,a\,c_{2}x^3\right]}{a^4\sqrt{a^2-x^2}},
where P
has three parameters: a
, b
, and c_{2}
.
Note
The argument P
in the DEPE
function has the same parameters, as those in the
EPE
function.
Author(s)
Peijian Shi pjshi@njfu.edu.cn, Johan Gielis johan.gielis@uantwerpen.be, Brady K. Quinn Brady.Quinn@dfo-mpo.gc.ca.
References
Shi, P., Chen, L., Quinn, B.K., Yu, K., Miao, Q., Guo, X., Lian, M., Gielis, J., Niklas, K.J. (2023)
A simple way to calculate the volume and surface area of avian eggs.
Annals of the New York Academy of Sciences 1524, 118-
131. doi:10.1111/nyas.15000
See Also
Examples
Par3 <- c(4.27, 2.90, 0.0868, 0.0224, -0.0287)
xx1 <- seq(-4.27, 4.27, by=0.001)
f1 <- DEPE(P=Par3, x=xx1, simpver=NULL)
f2 <- -DEPE(P=Par3, x=xx1, simpver=NULL)
dev.new()
plot(xx1, f1, type="l", col=4, cex.lab=1.5, cex.axis=1.5,
xlim=c(-5, 5), ylim=c(-35, 35), xlab=expression(italic(x)),
ylab=expression(paste(italic(f), "(", italic(x), ")", sep="")))
lines(xx1, f2, col=2)
graphics.off()