get_complexity_best_optimal_cost {binsegRcpp} | R Documentation |

## get complexity best optimal cost

### Description

Dynamic programming for computing lower bound on number of split candidates to compute / best case of binary segmentation. The dynamic programming recursion is on f(d,s) = best number of splits for segment of size s which is split d times. Need to optimize f(d,s) = g(s) + min f(d1,s1) + f(d2,s2) over s1,d1 given that s1+s2=s, d1+d2+1=d, and g(s) is the number of splits for segment of size s.

### Usage

```
get_complexity_best_optimal_cost(N.data,
min.segment.length = 1L,
n.segments = NULL)
```

### Arguments

`N.data` |
positive integer number of data. |

`min.segment.length` |
positive integer min segment length. |

`n.segments` |
positive integer number of segments. |

### Value

data table with one row for each f(d,s) value computed.

### Author(s)

Toby Dylan Hocking

### Examples

```
binsegRcpp::get_complexity_best_optimal_cost(
N.data = 19L,
min.segment.length = 3L,
n.segments = 4L)
```

[Package

*binsegRcpp*version 2023.8.31 Index]