bhpm.print.convergence.summary {bhpm} | R Documentation |
Print a Summary of the Convergence Diagnostics of the Simulation
Description
The function prints the maximum and minimum values of either Gelman-Rubin diagnostic or the Geweke diagnostic for each group of samples, e.g. theta, gamma, mu.gamma etc.
Usage
bhpm.print.convergence.summary(conv)
Arguments
conv |
The output from a call to bhpm.check.convergence. |
Value
Nothing
Note
The Geweke statistic is a Z-score calculated from a single chain. Due to the large number of variables sampled it is possible that a certain number will be deemed significant (at the 5% level) even though the simulation may have converged.
Author(s)
R. Carragher
Examples
data(bhpm.cluster.data1)
data <- subset(bhpm.cluster.data1, Cluster == '0.0-180.0' | Cluster == '180.0-360.0')
raw = bhpm.npm(data, burnin = 100, iter = 200)
conv = bhpm.convergence.diag(raw)
bhpm.print.convergence.summary(conv)
data(bhpm.cluster.data1)
raw = bhpm.npm(bhpm.cluster.data1)
conv = bhpm.convergence.diag(raw)
bhpm.print.convergence.summary(conv)
[Package bhpm version 1.7 Index]