Bayesian Hierarchical Poisson Models for Multiple Grouped Outcomes with Clustering


[Up] [Top]

Documentation for package ‘bhpm’ version 1.7

Help Pages

bhpm-package Bayesian Hierarchical Possion Models for Mulitple Grouped Outcomes with Clustering
bhpm.cluster.1a.hier2 A Two-Level Hierarchical Model for Grouped Data with Clusters and without Point-Mass.
bhpm.cluster.1a.hier3 A Three-Level Hierarchical Model for Grouped Data with Clusters and without Point-Mass.
bhpm.cluster.BB.hier2 A Two-Level Hierarchical Model for grouped data and clusters with Point-Mass.
bhpm.cluster.BB.hier3 A Three-Level Hierarchical Model for grouped data and clusters with Point-Mass.
bhpm.cluster.data1 Cluster analysis data.
bhpm.cluster.data2 Cluster analysis data.
bhpm.convergence.diag Convergence Diagnostics of the Simulation
bhpm.gen.initial.values Generate a template simulation initial values.
bhpm.global.sim.param.defaults Generate default global simulation parameters for a model.
bhpm.hyper.param.defaults Generate default hyperparameter values for a model.
bhpm.monitor.defaults Generate default variable monitor list for a model.
bhpm.monitor.samples Generate a template for choosing which samples to monitor.
bhpm.multi.treatments Cluster analysis data.
bhpm.multi.treatments.random.order Cluster analysis data.
bhpm.npm Fit a Bayesian Hierarchical Model for Grouped Data with Clusters and without Point-Mass.
bhpm.pm A Bayesian Hierarchical Model for grouped data and clusters with Point-Mass.
bhpm.pointmass.weights Generate a template for the point-mass weightings.
bhpm.print.convergence.summary Print a Summary of the Convergence Diagnostics of the Simulation
bhpm.print.summary.stats Print the Summary Statistics of Posterior Distributions
bhpm.ptheta Reports the posterior probability that theta (the increase in the log-odds) is greater than zero, zero, and less than zero for each outcome
bhpm.sim.control.params Generate a template for the individual model parameter simulation control parameters.
bhpm.summary.stats Summary Statistics for the Posterior Distributions in the model.