StatsSoftmax {bfw} | R Documentation |
Softmax Regression
Description
Perform softmax regression (i.e., multinomial logistic regression)
Usage
StatsSoftmax(
y = NULL,
y.names = NULL,
x = NULL,
x.names = NULL,
DF,
params = NULL,
job.group = NULL,
initial.list = NULL,
run.robust = FALSE,
...
)
Arguments
y |
criterion variable(s), Default: NULL |
y.names |
optional names for criterion variable(s), Default: NULL |
x |
predictor variable(s), Default: NULL |
x.names |
optional names for predictor variable(s), Default: NULL |
DF |
data to analyze |
params |
define parameters to observe, Default: NULL |
job.group |
for some hierarchical models with several layers of parameter names (e.g., latent and observed parameters), Default: NULL |
initial.list |
initial values for analysis, Default: list() |
run.robust |
logical, indicating whether or not robust analysis, Default: FALSE |
... |
further arguments passed to or from other methods |
See Also
Examples
## Conduct softmax regression on Cats data
### Reward is 0 = Food and 1 = Dance
### Sample 100 datapoints from Cats data
#mcmc <- bfw(project.data = bfw::Cats,
# y = "Alignment",
# x = "Ratings,Reward",
# saved.steps = 50000,
# jags.model = "softmax",
# jags.seed = 100)
## Conduct binominal generalized linear model
#model <- glm(Alignment ~ Ratings + Reward, data=bfw::Cats, family = binomial(link="logit"))
## Print output from softmax
#mcmc$summary.MCMC
#
## Mean Median Mode ESS HDIlo HDIhi n
##beta[1,1]: Evil vs. Ratings 0.000 0.00 -0.000607 0 0.000 0.000 2000
##beta[1,2]: Evil vs. Reward 0.000 0.00 -0.000607 0 0.000 0.000 2000
##beta[2,1]: Good vs. Ratings 1.289 1.29 1.283403 19614 1.187 1.387 2000
##beta[2,2]: Good vs. Reward 1.276 1.27 1.279209 20807 0.961 1.597 2000
##beta0[1]: Intercept: Evil 0.000 0.00 -0.000607 0 0.000 0.000 2000
##beta0[2]: Intercept: Good -7.690 -7.68 -7.659198 17693 -8.472 -6.918 2000
##zbeta[1,1]: Evil vs. Ratings 0.000 0.00 -0.000607 0 0.000 0.000 2000
##zbeta[1,2]: Evil vs. Reward 0.000 0.00 -0.000607 0 0.000 0.000 2000
##zbeta[2,1]: Good vs. Ratings 2.476 2.47 2.464586 19614 2.280 2.664 2000
##zbeta[2,2]: Good vs. Reward 0.501 0.50 0.501960 20807 0.377 0.626 2000
##zbeta0[1]: Intercept: Evil 0.000 0.00 -0.000607 0 0.000 0.000 2000
##zbeta0[2]: Intercept: Good -1.031 -1.03 -1.024178 22812 -1.185 -0.870 2000
#
## Print (truncated) output from GML
## Estimate Std. Error z value Pr(>|z|)
##(Intercept) -6.39328 0.27255 -23.457 < 2e-16 ***
##Ratings 1.28480 0.05136 25.014 < 2e-16 ***
##RewardAffection 1.26975 0.16381 7.751 9.1e-15 ***
[Package bfw version 0.4.2 Index]