functional.beta.pair {betapart} | R Documentation |
Pair-wise functional dissimilarities
Description
Computes 3 distance matrices accounting for the spatial turnover and nestedness components of functional beta diversity, and the sum of both values. Functional dissimilarities are based on volume of convex hulls intersections in a multidimensional functional space.
Usage
functional.beta.pair(x, traits, index.family="sorensen")
Arguments
x |
data frame, where rows are sites and columns are species. Alternatively |
traits |
if |
index.family |
family of dissimilarity indices, partial match of |
Details
If x
is a data.frame
then functional.betapart.core.pairwise
is called to compute the distance matrices necessary to compute the different components of the beta diversity. Only the default argument values will be used, while functional.betapart.core.pairwise
integrates options that could be much more efficient, such as internal parallelisation, or different options for the convexhull volume estimation.
Note that the the betapart
package now supports external parallel computing for null models. As for internal parallelisation, these functionalities are only availabe in functional.betapart.core
or in functional.betapart.core.pairwise
. In this case, use the functional.betapart
object as x
in this function. See functional.betapart.core
and functional.betepart.core.pairwise
for more details.
Value
The function returns a list with three functional dissimilarity matrices.
For index.family="sorensen"
the three matrices are:
funct.beta.sim |
|
funct.beta.sne |
|
funct.beta.sor |
|
For index.family="jaccard"
the three matrices are:
funct.beta.jtu |
|
funct.beta.jne |
|
funct.beta.jac |
|
Author(s)
Sébastien Villéger, Andrés Baselga and David Orme
References
Villéger S., Novack-Gottshal P. & Mouillot D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14: 561-568
Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21: 1223-1232
Villéger, S. Grenouillet, G., Brosse, S. 2013. Decomposing functional beta-diversity reveals that low functional beta-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography 22: 671–681
See Also
functional.beta.multi
, functional.betapart.core
, functional.betapart.core.pairwise
, beta.pair
Examples
##### 4 communities in a 2D functional space (convex hulls are rectangles)
traits.test<-cbind( c(1,1,1,2,2,3,3,4,4,5,5) , c(1,2,4,1,2,3,5,1,4,3,5) )
dimnames(traits.test)<-list(paste("sp",1:11,sep="") , c("Trait 1","Trait 2") )
comm.test<-matrix(0,4,11,dimnames=list( c("A","B","C","D") , paste("sp",1:11,sep="") ) )
comm.test["A",c(1,2,4,5)]<-1
comm.test["B",c(1,3,8,9)]<-1
comm.test["C",c(6,7,10,11)]<-1
comm.test["D",c(2,4,7,9)]<-1
plot(5,5,xlim=c(0,6), ylim=c(0,6), type="n", xlab="Trait 1",ylab="Trait 2")
points(traits.test[,1],traits.test[,2], pch=21,cex=1.5,bg="black")
rect(1,1,4,4, col="#458B0050", border="#458B00") ; text(2.5,2.5,"B",col="#458B00",cex=1.5)
polygon(c(2,1,3,4), c(1,2,5,4), col="#DA70D650", border="#DA70D6") ;
text(2.5,3,"D",col="#DA70D6",cex=1.5)
rect(1,1,2,2, col="#FF000050" , border="#FF0000") ; text(1.5,1.5,"A",col="#FF0000",cex=1.5)
rect(3,3,5,5, col="#1E90FF50", border="#1E90FF") ; text(4,4.2,"C",col="#1E90FF",cex=1.5)
test.pair<-functional.beta.pair(x=comm.test, traits=traits.test, index.family = "jaccard")
lapply(test.pair,round,2)
#### with functional.betapart.core.pairwise
test1 <- functional.betapart.core.pairwise(comm.test, traits.test)
test.pair <- functional.beta.pair(test1)
## Not run:
#### if internal parallelisation would be interesting (large community matrix)
test1 <- functional.betapart.core.pairwise(comm.test, traits.test, parallel = TRUE,
opt.parallel = list(nc = 2))
test.pair <- functional.beta.pair(test1)
## End(Not run)