beta.sample.abund {betapart} | R Documentation |
Resampling abundance-based multiple-site dissimilarity for n sites
Description
Resamples the 3 abundance-based multiple-site dissimilarities (balanced variation fraction,abundance-gradient fraction, and overall dissimilarity) for a subset of sites of the original data frame.
Usage
beta.sample.abund(x, index.family="bray", sites = nrow(x), samples = 1)
Arguments
x |
data frame, where rows are sites and columns are species |
index.family |
family of dissimilarity indices, partial match of |
sites |
number of sites for which multiple-site dissimilarities will be computed. If not specified, default is all sites. |
samples |
number of repetitions. If not specified, default is 1. |
Value
The function returns a list with a dataframe with the resampled 3 multiple-site dissimilarities
(balanced variation fraction, abundance-gradient fraction and overall dissimilarity; see beta.multi.abund
),
a vector with the respective means and a vector with the respective standard deviation.
For index.family="bray"
:
sampled.values |
dataframe containing beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY for all samples |
mean.values |
vector containing the mean values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples |
sd.values |
vector containing the sd values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples |
For index.family="ruzicka"
:
sampled.values |
dataframe containing beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ for all samples |
mean.values |
vector containing the mean values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples |
sd.values |
vector containing the sd values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples |
Author(s)
Andrés Baselga
References
Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799-808
See Also
Examples
require(vegan)
data(BCI)
beta.sample.abund(BCI, index.family="bray", sites=10, samples=100)