SCorMC {betaMC}R Documentation

Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Description

Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method

Usage

SCorMC(object, alpha = c(0.05, 0.01, 0.001))

Arguments

object

Object of class mc, that is, the output of the MC() function.

alpha

Numeric vector. Significance level \alpha.

Details

The vector of semipartial correlation coefficients (r_{s}) is derived from each randomly generated vector of parameter estimates. Confidence intervals are generated by obtaining percentiles corresponding to 100(1 - \alpha)\% from the generated sampling distribution of r_{s}, where \alpha is the significance level.

Value

Returns an object of class betamc which is a list with the following elements:

call

Function call.

args

Function arguments.

thetahatstar

Sampling distribution of r_{s}.

vcov

Sampling variance-covariance matrix of r_{s}.

est

Vector of estimated r_{s}.

fun

Function used ("SCorMC").

Author(s)

Ivan Jacob Agaloos Pesigan

See Also

Other Beta Monte Carlo Functions: BetaMC(), DeltaRSqMC(), DiffBetaMC(), MCMI(), MC(), PCorMC(), RSqMC()

Examples

# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")

# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)

# MC -----------------------------------------------------------------------
mc <- MC(
  object,
  R = 100, # use a large value e.g., 20000L for actual research
  seed = 0508
)

# SCorMC -------------------------------------------------------------------
out <- SCorMC(mc, alpha = 0.05)

## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)


[Package betaMC version 1.3.1 Index]