SCorMC {betaMC} | R Documentation |
Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Description
Estimate Semipartial Correlation Coefficients and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
SCorMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of semipartial correlation coefficients
(r_{s}
)
is derived from each randomly generated vector of parameter estimates.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of r_{s}
,
where \alpha
is the significance level.
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
r_{s}
.- vcov
Sampling variance-covariance matrix of
r_{s}
.- est
Vector of estimated
r_{s}
.- fun
Function used ("SCorMC").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
MCMI()
,
PCorMC()
,
RSqMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# SCorMC -------------------------------------------------------------------
out <- SCorMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)