RSqMC {betaMC} | R Documentation |
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Description
Estimate Multiple Correlation Coefficients (R-Squared and Adjusted R-Squared) and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
RSqMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
R-squared (R^{2}
) and
adjusted R-squared (\bar{R}^{2}
)
are derived from each randomly generated vector of parameter estimates.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of R^{2}
and \bar{R}^{2}
,
where \alpha
is the significance level.
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
R^{2}
and\bar{R}^{2}
.- vcov
Sampling variance-covariance matrix of
R^{2}
and\bar{R}^{2}
.- est
Vector of estimated
R^{2}
and\bar{R}^{2}
.- fun
Function used ("RSqMC").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MC()
,
MCMI()
,
PCorMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# RSqMC --------------------------------------------------------------------
out <- RSqMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)