MC {betaMC} | R Documentation |
Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method
Description
Generate the Sampling Distribution of Regression Parameters Using the Monte Carlo Method
Usage
MC(
object,
R = 20000L,
type = "hc3",
g1 = 1,
g2 = 1.5,
k = 0.7,
decomposition = "eigen",
pd = TRUE,
tol = 1e-06,
fixed_x = FALSE,
seed = NULL
)
Arguments
object |
Object of class |
R |
Positive integer. Number of Monte Carlo replications. |
type |
Character string.
Sampling covariance matrix type.
Possible values are
|
g1 |
Numeric.
|
g2 |
Numeric.
|
k |
Numeric.
Constant for |
decomposition |
Character string.
Matrix decomposition of the sampling variance-covariance matrix
for the data generation.
If |
pd |
Logical.
If |
tol |
Numeric.
Tolerance used for |
fixed_x |
Logical.
If |
seed |
Integer. Seed number for reproducibility. |
Details
Let the parameter vector of the unstandardized regression model be given by
\boldsymbol{\theta}
=
\left\{
\mathbf{b},
\sigma^{2},
\mathrm{vech}
\left(
\boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}}
\right)
\right\}
where \mathbf{b}
is the vector of regression slopes,
\sigma^{2}
is the error variance,
and
\mathrm{vech}
\left(
\boldsymbol{\Sigma}_{\mathbf{X}\mathbf{X}}
\right)
is the vector of unique elements
of the covariance matrix of the regressor variables.
The empirical sampling distribution
of \boldsymbol{\theta}
is generated using the Monte Carlo method,
that is, random values of parameter estimates
are sampled from the multivariate normal distribution
using the estimated parameter vector as the mean vector
and the specified sampling covariance matrix using the type
argument
as the covariance matrix.
A replacement sampling approach is implemented
to ensure that the model-implied covariance matrix
is positive definite.
Value
Returns an object
of class mc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- scale
Sampling variance-covariance matrix of parameter estimates.
- location
Parameter estimates.
- thetahatstar
Sampling distribution of parameter estimates.
- fun
Function used ("MC").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99-128. doi:10.1207/s15327906mbr3901_4
Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. doi:10.3758/s13428-023-02114-4
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. doi:10.1080/19312458.2012.679848
See Also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
DiffBetaMC()
,
MCMI()
,
PCorMC()
,
RSqMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
mc
# The `mc` object can be passed as the first argument
# to the following functions
# - BetaMC
# - DeltaRSqMC
# - DiffBetaMC
# - PCorMC
# - RSqMC
# - SCorMC