DiffBetaMC {betaMC} | R Documentation |
Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Description
Estimate Differences of Standardized Slopes and Generate the Corresponding Sampling Distribution Using the Monte Carlo Method
Usage
DiffBetaMC(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of differences of standardized regression slopes
is derived from each randomly generated vector of parameter estimates.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of differences of standardized regression slopes,
where \alpha
is the significance level.
Value
Returns an object
of class betamc
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of differences of standardized regression slopes.
- vcov
Sampling variance-covariance matrix of differences of standardized regression slopes.
- est
Vector of estimated differences of standardized regression slopes.
- fun
Function used ("DiffBetaMC").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Monte Carlo Functions:
BetaMC()
,
DeltaRSqMC()
,
MC()
,
MCMI()
,
PCorMC()
,
RSqMC()
,
SCorMC()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaMC")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# MC -----------------------------------------------------------------------
mc <- MC(
object,
R = 100, # use a large value e.g., 20000L for actual research
seed = 0508
)
# DiffBetaMC ---------------------------------------------------------------
out <- DiffBetaMC(mc, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)