normTest {berryFunctions} | R Documentation |
Test values for normality of distribution
Description
Normality test: histogram with corresponding normal density distribution line,
as well as p values for various normality tests.
The package nortest
is needed for full functionality.
Usage
normTest(
v,
plot = TRUE,
main = deparse(substitute(v)),
breaks = 15,
col = "tan",
legend = TRUE,
...
)
Arguments
v |
Vector of values to be tested for normality |
plot |
Plot the histogram with the corresponding normal density distribution? DEFAULT: TRUE |
main |
Graph title. DEFAULT: |
breaks |
Number of bins. Exact, unlike in |
col |
Color of bars. DEFAULT: "tan" |
legend |
Add legend text in topright? DEFAULT: TRUE |
... |
Further arguments passed to |
Value
named vector of p values
Author(s)
Berry Boessenkool, berry-b@gmx.de, Sep 2021
See Also
Examples
normTest(rnorm(1000, mean=97, sd=8.9))
# if p > 0.05: accept Nullhypothesis that data are normally distributed.
normTest(rexp(30))
if(requireNamespace("pbapply")) replicate <- pbapply::pbreplicate
par(mfcol=c(7,6), mar=c(0,0.1,1,0.1), oma=c(2.5,1.5,2.5,0), las=1)
invisible(sapply(c("rnorm(10)", "rnorm(100)",
"rexp(10)", "rexp(100)",
"runif(10)", "runif(100)"), function(vv){
check <- replicate(1e2, normTest(v=eval(str2lang(vv)), plot=FALSE))
for(n in rownames(check))
{hist(check[n,], breaks=seq(0,1,len=20), axes=FALSE, ylab="", xlab="", main="")
if(n=="ShapiroWilk") title(main=vv, line=1, xpd=NA)
if(vv=="rnorm(10)") title(ylab=n, line=0, xpd=NA)
abline(v=0.05, col="blue", lwd=1, xpd=TRUE)
}
axis(1, at=0:1)
}))
title(main="P values of tests for normality with", outer=TRUE, line=1.5)
[Package berryFunctions version 1.22.5 Index]