lsc {berryFunctions}R Documentation

Linear storage cascade, unit hydrograph


Optimize the parameters for unit hydrograph as in the framework of the linear storage cascade. Plot observed & simulated data


  area = 50,
  Qbase = Q[1],
  n = 2,
  k = 3,
  x = 1:length(P),
  fit = 1:length(Q),
  plot = TRUE,
  main = "Precipitation and discharge",
  plotsim = TRUE,
  returnsim = FALSE,
  type = c("o", "l"),
  legx = "center",
  legy = NULL,



Vector with precipitation values in mm in hourly spacing


Vector with observed discharge (runoff) in m^3/s with the same length as precipitation.


Single numeric. Catchment area in km^2


baseflow that is added to UH-induced simulated Q, thus cutting off baseflow in a very simple manner.


Numeric. Initial number of storages in cascade. not necessarily integer. DEFAULT: 2


Numeric. Initial storage coefficient (resistance to let water run out). High damping, slowly reacting landscape, high k. DEFAULT: 3


Vector for the x-axis of the plot. DEFAULT: sequence along P


Integer vector. Indices for a subset of Q that Qsim is fitted to. DEFAULT: all of Q


Logical. plot input data? DEFAULT: TRUE


Character string. DEFAULT: "Precipitation and discharge"


Logical. add best fit to plot? DEFAULT: TRUE


Logical. Return simulated Q instead of parameters of UH? DEFAULT: FALSE


Vector with two characters: type as in plot, repeated if only one is given. 1st for obs, 2nd for sim. DEFAULT: c("o","l")


legend position. DEFAULT: "center"


legend position. DEFAULT: NULL


arguments passed to optim


Either vector with optimized n and k and the Nash-Sutcliffe Index, or simulated discharge, depending on the value of returnsim


Berry Boessenkool,, July 2013

Skript 'Abflusskonzentration' zur Vorlesungsreihe Abwasserentsorgung I von Prof. Krebs an der TU Dresden

See Also

unitHydrograph, superPos, nse, rmse. deconvolution.uh in the package hydromad,


qpfile <- system.file("extdata/Q_P.txt", package="berryFunctions")
qp <- read.table(qpfile, sep="\t", dec=",", header=TRUE)
calib <- qp[1:90,]
valid <- qp[-(1:90),]

# Area can be estimated from runoff coefficient (proportion of N becoming Q):
#    k*P * A = Q * t      A = Qt / kP
# Q=0.25 m^3/s  * t=89 h   *  3600 s/h   k=psi* P =34mm = 0.034m = m^3/m^2
#                                                      / 1e6 m^2/km^2   = km^2
mean(calib$Q) * length(calib$Q) *3600  / ( 0.7 * sum(calib$P)/1000) / 1e6
# 3.368 km^2

# calibrate Unit Hydrograph:
UHcalib <- lsc(calib$P, calib$Q, area=3.4)
UHcalib # n 0.41  k 244.9  NSE 0.74  psi 0.45
# Psi is lower than 0.7, as it is now calculated on direct runoff only

# Corresponding Unit Hydrograph:
UH <- unitHydrograph(n=UHcalib["n"], k=UHcalib["k"], t=1:length(calib$P))
plot(UH, type="l") # That's weird anyways...
sum(UH) # 0.58 - we need to look at a longer time frame

# calibrate Unit Hydrograph on peak only:
lsc(calib$P, calib$Q, area=3.4, fit=17:40) # n 0.63  k  95.7  NSE 0.67
# for fit, use index numbers, not x-axis units (if you have specified x)

# Simulated discharge instead of parameters:
lsc(calib$P, calib$Q, area=3.4, returnsim=TRUE, plot=FALSE)

## Not run: ## Time consuming tests excluded from CRAN checks

# Apply this to the validation event
dummy <- lsc(valid$P, valid$Q, area=3.4, plotsim=FALSE, type="l")
Qsim <- superPos(valid$P, UH)
Qsim <- Qsim + valid$Q[1] # add baseflow
lines(Qsim, lwd=2, xpd=NA)
legend("center", legend=c("Observed","Simulated from calibration"),
       lwd=c(1,2), col=c(2,1) )
nse(valid$Q, Qsim[1:nrow(valid)]) # 0.47, which is not really good.
# performs OK for the first event, but misses the peak from the second.
# this particular UH is apparently not suitable for high pre-event soil moisture.
# Along with longer events, UH properties may change!!!
dummy # in-sample NSE 0.75 is a lot better

# Now for the second peak in the validation dataset:
lsc(valid$P, valid$Q, type="l", area=3.4, fit=60:90) # overestimates first peak
# Area cannot be right - is supposedly 17 km^2.

# Different starting points for optim:
lsc(calib$P, calib$Q, area=3.4, n= 2  , k=  3, plot=FALSE) # Default
lsc(calib$P, calib$Q, area=3.4, n= 5  , k= 20, plot=FALSE) # same result
lsc(calib$P, calib$Q, area=3.4, n=10  , k= 20, plot=FALSE) # ditto
lsc(calib$P, calib$Q, area=3.4, n=10  , k=  3, plot=FALSE) # ditto
lsc(calib$P, calib$Q, area=3.4, n= 1.9, k=900, plot=FALSE) # ditto
lsc(calib$P, calib$Q, area=3.4, n=50  , k= 20) # nonsense
# the catchment is small, so n must be low.

#sensitivity against area uncertainty:
Asens <- data.frame(A=seq(1,15,0.5),
    t(sapply(seq(1,15,0.5), function(A) lsc(calib$P, calib$Q, area=A, plot=FALSE))))
plot(Asens$A, Asens$NSE, type="l", ylim=c(-0.3,2), las=1, main="lsc depends on area")
abline(v=3.4, lty=2)
lines(Asens$A, Asens$n, col=2)
points(3.4, 2, col=2)
lines(Asens$A, Asens$psi, col=5)
text(rep(13,4),y=c(1.5, 0.8, 0.4,0), c("k ->","<- NSE","<- n","<- psi"), col=c(4,1,2,5))
par(new=TRUE); plot(Asens$A, Asens$k, type="l", ann=FALSE, axes=FALSE, col=4)
axis(4, col.axis=4)
points(3.4, 3, col=4)

# Autsch - that shouldn't happen!
# Still need to find out what to do with optim

lsc(calib$P, calib$Q, area=1.6) # not bad indeed

## End(Not run)

[Package berryFunctions version 1.22.0 Index]