Posterior.BRugs {bcrm} | R Documentation |
Returns samples from the posterior distributions of each model parameter using OpenBUGS.
Description
If ff = "logit2"
(i.e. a two-parameter logistic model is used), a matrix of dimensions
production.itr
-by-2 is returned (the first and second columns containing the posterior samples for the
intercept and slope parameters respectively). Otherwise, a vector of length production.itr
is returned.
Usage
Posterior.BRugs(tox, notox, sdose, ff, prior.alpha, burnin.itr,
production.itr)
Arguments
tox |
A vector of length |
notox |
A vector of length |
sdose |
A vector of length |
ff |
A string indicating the functional form of the dose-response curve. Options are
|
prior.alpha |
A list of length 3 containing the distributional information for the prior. The first element is a number from 1-4 specifying the type of distribution. Options are
The second and third elements of the list are the parameters a and b, respectively. |
burnin.itr |
Number of burn-in iterations (default 2000). |
production.itr |
Number of production iterations (default 2000). |
Author(s)
Michael Sweeting mjs212@medschl.cam.ac.uk (University of Cambridge, UK), drawing on code originally developed by J. Jack Lee and Nan Chen, Department of Biostatistics, the University of Texas M. D. Anderson Cancer Center
References
Sweeting M., Mander A., Sabin T. bcrm: Bayesian Continual Reassessment Method Designs for Phase I Dose-Finding Trials. Journal of Statistical Software (2013) 54: 1–26. http://www.jstatsoft.org/article/view/v054i13
See Also
Examples
## Dose-escalation cancer trial example as described in Neuenschwander et al 2008.
## Pre-defined doses
dose <- c(1, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, 150, 200, 250)
## Pre-specified probabilities of toxicity
## [dose levels 11-15 not specified in the paper, and are for illustration only]
p.tox0 <- c(0.010, 0.015, 0.020, 0.025, 0.030, 0.040, 0.050,
0.100, 0.170, 0.300, 0.400, 0.500, 0.650, 0.800, 0.900)
## Data from the first 5 cohorts of 18 patients
tox <- c(0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
notox <- c(3, 4, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
## Target toxicity level
target.tox <- 0.30
## Prior distribution for the MTD given a lognormal(0, 1.34^2) distribution for alpha
## and a power model functional form
prior.alpha <- list(3, 0, 1.34^2)
ff <- "power"
samples.alpha <- getprior(prior.alpha, 2000)
mtd <- find.x(ff, target.tox, alpha=samples.alpha)
hist(mtd)
## Standardised doses
sdose <- find.x(ff, p.tox0, alpha=1)
## Posterior distribution of the MTD (on standardised dose scale) using data
## from the cancer trial described in Neuenschwander et al 2008.
## Using BRugs
## Not run:
posterior.samples <- Posterior.BRugs(tox, notox, sdose, ff, prior.alpha
, burnin.itr=2000, production.itr=2000)
## End(Not run)