plot.bcpa {bcpa} | R Documentation |
Plotting method for BCPA output
Description
Plotting method for the output of a BCPA analysis with vertical break points, superimposed estimates of the partitioned mean and variance estimates and color-coded autocorrelation estimates.
Usage
## S3 method for class 'bcpa'
plot(
x,
type = c("smooth", "flat")[1],
threshold = 3,
clusterwidth = 1,
col.cp = rgb(0.5, 0, 0.5, 0.5),
pt.cex = 0.5,
legend = TRUE,
rho.where = "topleft",
mu.where = "nowhere",
col.sd = "red",
col.mean = "black",
...
)
Arguments
x |
a |
type |
whether to plot smooth or flat bcpa output |
threshold |
for smooth BCPA, this is the minimum number of windows that must have identified a given changepoint to be illustrated. |
clusterwidth |
for flat BCPA, this is the temporal range within which change points are considered to be within the same cluster. |
col.cp , col.mean , col.sd |
color of the vertical change points, mean estimate, and prediction interval (mu +- sigma), respectively. |
pt.cex |
expansion coefficient for point sizes. |
legend |
logical - whether to draw a legend or not. |
rho.where |
where to place the legend for the time-scale / auto-correlation. Can be one of "nowhere", "top", "bottom", "left", "right", "topleft", "topright", "bottomright", "bottomleft" |
mu.where |
where (and whether) to place the legend box for the mean -
same options as for |
... |
other arguments to pass to the |
Author(s)
Eliezer Gurarie
See Also
Plots output of the WindowSweep
function.
Examples
if(!exists("Simp.ws"))
{
data(Simp)
Simp.ws <- WindowSweep(GetVT(Simp), "V*cos(Theta)", windowsize = 50,
windowstep = 1, progress=TRUE)
}
plot(Simp.ws)
# this actually provides basically the exact original changepoints
plot(Simp.ws, threshold=7)
# here's a flat analysis
plot(Simp.ws, type="flat", clusterwidth=3, legend=FALSE)