bayesvl plot utilities {bayesvl} | R Documentation |
Plot utilities for bayesvl objects
Description
Provides plot methods and the interface to the MCMC module in the bayesplot package for plotting MCMC draws and diagnostics for an object of class bayesvl
.
Usage
# Plot network diagram to visualize the model
bvl_bnPlot(dag, ...)
# Plots historgram of regression parameters computed from posterior draws in grid layout
bvl_plotParams (dag, row = 2, col = 2, credMass = 0.89, params = NULL)
# The interface to mcmc_intervals for plotting uncertainty intervals
# computed from posterior draws
bvl_plotIntervals (dag, params = NULL, fun = "stat", stat = "mean",
prob = 0.8, prob_outer = 0.95,
color_scheme = "blue", labels = NULL)
# The interface to mcmc_intervals for plotting density computed from posterior draws
bvl_plotAreas (dag, params = NULL, fun = "stat", stat = "mean",
prob = 0.8, prob_outer = 0.95,
color_scheme = "blue", labels = NULL)
bvl_plotPairs (dag, params = NULL, fun = "stat", stat = "mean",
prob = 0.8, prob_outer = 0.95,
color_scheme = "blue", labels = NULL)
bvl_plotDensity (dag, params = NULL, size = 1, labels = NULL)
bvl_plotDensity2d(dag, x, y, color = NULL, color_scheme = "red", labels = NULL)
bvl_plotTrace (dag, params = NULL)
bvl_plotDiag (dag)
bvl_plotGelman (dag, params = NULL)
bvl_plotGelmans (dag, params = NULL, row = 2, col = 2)
bvl_plotAcfs ( dag, params = NULL, row = 2, col = 2)
bvl_plotTest (dag, y_name, test_name, n = 200, color_scheme = "blue")
Arguments
dag |
an object of class |
params |
Optional: character vector of parameter names. |
fun |
Optional: statistic function. |
stat |
Optional: the plotting function to call. |
prob |
Optional: the probability mass to include in the inner interval. Default is 0.8. |
prob_outer |
Optional: the probability mass to include in the outer interval. Default is 0.95. |
row |
Optional: number of rows of grid layout. |
col |
Optional: number of columns of grid layout. |
credMass |
Optional: specifying the mass within the credible interval. Default is 0.89. |
size |
Optional: the size of line width. |
color_scheme |
Optional: color scheme. Default is "blue" |
... |
extra arguments from the generic method |
y_name |
a character string. Name of outcome variable |
test_name |
a character string. Name of test variable and test value |
n |
number of yrep values to plot |
x |
a character string. Name of x parameter to pair with |
y |
a character string. Name of y parameter to pair with |
color |
a character string. Variable for color of points on density plot |
labels |
Optional: character vector of parameter labels. |
Value
bvl_plotIntervals(), bvl_plotPairs()
return a ggplot object that can be further customized using the ggplot2 package.
Author(s)
La Viet-Phuong, Vuong Quan-Hoang
References
For documentation, case studies and worked examples, and other tutorial information visit the References section on our Github:
Examples
## create network model
model <- bayesvl()
## add the observed data nodes
model <- bvl_addNode(model, "O", "binom")
model <- bvl_addNode(model, "Lie", "binom")
model <- bvl_addNode(model, "Viol", "binom")
model <- bvl_addNode(model, "VB", "binom")
model <- bvl_addNode(model, "VC", "binom")
model <- bvl_addNode(model, "VT", "binom")
model <- bvl_addNode(model, "Int1", "binom")
model <- bvl_addNode(model, "Int2", "binom")
## add the tranform data nodes and arcs as part of the model
model <- bvl_addNode(model, "B_and_Viol", "trans")
model <- bvl_addNode(model, "C_and_Viol", "trans")
model <- bvl_addNode(model, "T_and_Viol", "trans")
model <- bvl_addArc(model, "VB", "B_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "B_and_Viol", "*")
model <- bvl_addArc(model, "VC", "C_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "C_and_Viol", "*")
model <- bvl_addArc(model, "VT", "T_and_Viol", "*")
model <- bvl_addArc(model, "Viol", "T_and_Viol", "*")
model <- bvl_addArc(model, "B_and_Viol", "O", "slope")
model <- bvl_addArc(model, "C_and_Viol", "O", "slope")
model <- bvl_addArc(model, "T_and_Viol", "O", "slope")
model <- bvl_addArc(model, "Viol", "O", "slope")
model <- bvl_addNode(model, "B_and_Lie", "trans")
model <- bvl_addNode(model, "C_and_Lie", "trans")
model <- bvl_addNode(model, "T_and_Lie", "trans")
model <- bvl_addArc(model, "VB", "B_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "B_and_Lie", "*")
model <- bvl_addArc(model, "VC", "C_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "C_and_Lie", "*")
model <- bvl_addArc(model, "VT", "T_and_Lie", "*")
model <- bvl_addArc(model, "Lie", "T_and_Lie", "*")
model <- bvl_addArc(model, "B_and_Lie", "O", "slope")
model <- bvl_addArc(model, "C_and_Lie", "O", "slope")
model <- bvl_addArc(model, "T_and_Lie", "O", "slope")
model <- bvl_addArc(model, "Lie", "O", "slope")
model <- bvl_addNode(model, "Int1_or_Int2", "trans")
model <- bvl_addArc(model, "Int1", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int2", "Int1_or_Int2", "+")
model <- bvl_addArc(model, "Int1_or_Int2", "O", "varint")
## Plot network diagram to visualize the model
bvl_bnPlot(model)