plot_gamma_poisson {bayesrules} | R Documentation |
Plot a Gamma-Poisson Bayesian Model
Description
Consider a Gamma-Poisson Bayesian model for rate parameter \lambda
with
a Gamma(shape, rate) prior on \lambda
and a Poisson likelihood for the data.
Given information on the prior (shape and rate)
and data (the sample size n and sum_y),
this function produces a plot of any combination of the corresponding prior pdf,
scaled likelihood function, and posterior pdf. All three are included by default.
Usage
plot_gamma_poisson(
shape,
rate,
sum_y = NULL,
n = NULL,
prior = TRUE,
likelihood = TRUE,
posterior = TRUE
)
Arguments
shape |
non-negative shape parameter of the Gamma prior |
rate |
non-negative rate parameter of the Gamma prior |
sum_y |
sum of observed data values for the Poisson likelihood |
n |
number of observations for the Poisson likelihood |
prior |
a logical value indicating whether the prior model should be plotted. |
likelihood |
a logical value indicating whether the scaled likelihood should be plotted. |
posterior |
a logical value indicating whether posterior model should be plotted. |
Value
a ggplot
Examples
plot_gamma_poisson(shape = 100, rate = 20, sum_y = 39, n = 6)
plot_gamma_poisson(shape = 100, rate = 20, sum_y = 39, n = 6, posterior = FALSE)