dispersion {bayesnec} | R Documentation |
Posterior dispersion
Description
Calculates a posterior dispersion metric.
Usage
dispersion(model, summary = FALSE, seed = 10)
Arguments
model |
An object of class |
summary |
Logical. Should summary stats be returned instead of full vector? Defaults to FALSE. |
seed |
Change seed for reproducible purposes. |
Details
This function calculates a dispersion metric which takes the ratio between the observed relative to simulated Pearson residuals sums of squares.
Value
A numeric
vector. If summary
is FALSE, an
n-long vector containing the dispersion metric, where n is the number of post
warm-up posterior draws from the brmsfit
object. If
TRUE, then a data.frame
containing the summary stats
(mean, median, 95% highest density intervals) of the dispersion metric.
References
Zuur, A. F., Hilbe, J. M., & Ieno, E. N. (2013). A Beginner's Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. Highland Statistics Limited.
Examples
## Not run:
library(bayesnec)
data(nec_data)
nec_data$y <- as.integer(round(nec_data$y * 100))
nec4param <- bnec(y ~ crf(x, "nec4param"), data = nec_data, chains = 2)
dispersion(nec4param, summary = TRUE)
## End(Not run)