JAGSrun {bayesmix} | R Documentation |
MCMC sampling of Bayesian models
Description
Calls jags for MCMC sampling.
Usage
JAGSrun(y, prefix = yname, model = BMMmodel(k = 2),
control = JAGScontrol(variables = c("mu", "tau", "eta")),
tmp = TRUE, cleanup = TRUE, ...)
Arguments
y |
a numeric vector. |
prefix |
character: prefix for .bug-file. |
model |
object of class |
control |
specification of control by a |
tmp |
logical: shall the files be written in a temporary directory. |
cleanup |
logical: shall the created files be removed. |
yname |
a character string with the actual |
... |
further parameters handed over to |
Details
This function is a wrapper calling JAGScall
.
Value
Returns a JAGSrun
object with components
call |
the matched call. |
results |
MCMC results obtained by calling functionality from package rjags. |
model |
a |
variables |
vector containing the names of the monitored variables. |
data |
a numeric vector. |
Author(s)
Bettina Gruen
See Also
Examples
data("fish", package = "bayesmix")
prefix <- "fish"
variables <- c("mu","tau","eta")
k <- 3
modelFish <- BMMmodel(k = k, priors = list(kind = "independence",
parameter = "priorsFish", hierarchical = "tau"))
controlFish <- JAGScontrol(variables = c(variables, "S"), n.iter = 100)
z1 <- JAGSrun(fish, prefix, model = modelFish, initialValues = list(S0 = 2),
control = controlFish, cleanup = TRUE, tmp = FALSE)
zSort <- Sort(z1, "mu")
BMMposteriori(zSort)
data("darwin", package = "bayesmix")
prefix <- "darwin"
k <- 2
modelDarwin <- BMMmodel(k = k, priors = list(kind = "independence",
parameter = "priorsUncertain"),
aprioriWeights = c(1, 15),
no.empty.classes = TRUE, restrict = "tau")
z2 <- JAGSrun(darwin, prefix, model = modelDarwin, control =
JAGScontrol(variables = variables, n.iter = 3000,
burn.in = 1000), cleanup = TRUE, tmp = FALSE)
plot(z2, variables = "mu")
[Package bayesmix version 0.7-6 Index]