kldiv {bayesmeta} | R Documentation |
Kullback-Leibler divergence of two multivariate normal distributions.
Description
Compute the Kullback-Leiber divergence or symmetrized KL-divergence based on means and covariances of two normal distributions.
Usage
kldiv(mu1, mu2, sigma1, sigma2, symmetrized=FALSE)
Arguments
mu1 , mu2 |
the two mean vectors. |
sigma1 , sigma2 |
the two covariance matrices. |
symmetrized |
logical; if |
Details
The Kullback-Leibler divergence (or relative entropy) of two
probability distributions p
and q
is defined as the
integral
D_{\mathrm{KL}}(p\,||\,q) = \int_\Theta
\log\Bigl(\frac{p(\theta)}{q(\theta)}\Bigr)\, p(\theta)\,
\mathrm{d}\theta.
In the case of two normal distributions with mean and variance
parameters given by (\mu_1
, \Sigma_1
) and
(\mu_2
, \Sigma_2
), respectively, this
results as
D_{\mathrm{KL}}\bigl(p(\theta|\mu_1,\Sigma_1)\,||\,p(\theta|\mu_2,\Sigma_2)\bigr) = \frac{1}{2}\biggl(\mathrm{tr}(\Sigma_2^{-1} \Sigma_1) + (\mu_1-\mu_2)^\prime \Sigma_2^{-1} (\mu_1-\mu_2) - d + \log\Bigl(\frac{\det(\Sigma_2)}{\det(\Sigma_1)}\Bigr)\biggr)
where d
is the dimension.
The symmetrized divergence simply results as
D_{\mathrm{s}}(p\,||\,q)=D_{\mathrm{KL}}(p\,||\,q)+D_{\mathrm{KL}}(q\,||\,p).
Value
The divergence (D_{\mathrm{KL}} \geq 0
or D_{\mathrm{s}} \geq 0
).
Author(s)
Christian Roever christian.roever@med.uni-goettingen.de
References
S. Kullback. Information theory and statistics. John Wiley and Sons, New York, 1959.
C. Roever, T. Friede. Discrete approximation of a mixture distribution via restricted divergence. Journal of Computational and Graphical Statistics, 26(1):217-222, 2017. doi:10.1080/10618600.2016.1276840.
See Also
bmr
.
Examples
kldiv(mu1=c(0,0), mu2=c(1,1), sigma1=diag(c(2,2)), sigma2=diag(c(3,3)))