forestplot.escalc {bayesmeta} | R Documentation |
Generate a forest plot for an escalc
object
(based on the forestplot
package's plotting functions).
Description
Generates a forest plot, showing estimates along with their 95 percent confidence intervals.
Usage
## S3 method for class 'escalc'
forestplot(x, labeltext, exponentiate=FALSE,
digits=2, plot=TRUE,
fn.ci_norm, fn.ci_sum, col, boxsize, ...)
Arguments
x |
an |
labeltext |
an (alternative) “ |
exponentiate |
a logical flag indicating whether to exponentiate numbers (effect sizes) in table and plot. |
digits |
The number of significant digits to be shown. This is interpreted relative to the standard errors of all estimates. |
plot |
a logical flag indicating whether to actually generate a plot. |
fn.ci_norm , fn.ci_sum , col , boxsize , ... |
other arguments passed on to the
forestplot package's |
Details
Generates a forest plot illustrating the data returned by the
“escalc()
” function (showing the
estimates potentially to be meta-analyzed, but without a combined
summary estimate).
Note
This function is based on the forestplot package's
“forestplot()
” function.
Author(s)
Christian Roever christian.roever@med.uni-goettingen.de
References
C. Roever. Bayesian random-effects meta-analysis using the bayesmeta R package. Journal of Statistical Software, 93(6):1-51, 2020. doi:10.18637/jss.v093.i06.
C. Lewis and M. Clarke. Forest plots: trying to see the wood and the trees. BMJ, 322:1479, 2001. doi:10.1136/bmj.322.7300.1479.
R.D. Riley, J.P. Higgins and J.J. Deeks. Interpretation of random effects meta-analyses. BMJ, 342:d549, 2011. doi:10.1136/bmj.d549.
See Also
escalc
,
forestplot
,
forestplot.bayesmeta
,
forestplot.bmr
.
Examples
# load data:
data("CrinsEtAl2014")
# compute effect sizes (log odds ratios) from count data
# (using "metafor" package's "escalc()" function):
crins.es <- escalc(measure="OR",
ai=exp.AR.events, n1i=exp.total,
ci=cont.AR.events, n2i=cont.total,
slab=publication, data=CrinsEtAl2014)
print(crins.es)
########################
# generate forest plots;
# with default settings:
forestplot(crins.es)
# exponentiate values (shown in table and plot), show vertical line at OR=1:
forestplot(crins.es, expo=TRUE, zero=1)
# logarithmic x-axis:
forestplot(crins.es, expo=TRUE, xlog=TRUE)
# show more decimal places:
forestplot(crins.es, digits=3)
# change table values:
# (here: add columns for event counts)
fp <- forestplot(crins.es, expo=TRUE, plot=FALSE)
labtext <- fp$labeltext
labtext <- cbind(labtext[,1],
c("treatment",
paste0(CrinsEtAl2014[,"exp.AR.events"], "/", CrinsEtAl2014[,"exp.total"])),
c("control",
paste0(CrinsEtAl2014[,"cont.AR.events"], "/", CrinsEtAl2014[,"cont.total"])),
labtext[,2:3])
labtext[1,4] <- "OR"
print(fp$labeltext) # before
print(labtext) # after
forestplot(crins.es, labeltext=labtext, expo=TRUE, xlog=TRUE)
# see also the "forestplot" help for more arguments that you may change,
# e.g. the "clip", "xticks", "xlab" and "title" arguments,
# or the "txt_gp" argument for label sizes etc.:
forestplot(crins.es, clip=c(-4,1), xticks=(-3):0,
xlab="log-OR", title="pediatric transplantation example",
txt_gp = fpTxtGp(ticks = gpar(cex=1), xlab = gpar(cex=1)))
###########################################################
# In case effects and standard errors are computed already
# (and normally one wouldn't need to call "escalc()")
# you can still use "escalc()" to assemble the plot, e.g.:
data("HinksEtAl2010")
print(HinksEtAl2010)
hinks.es <- escalc(yi=log.or, sei=log.or.se,
slab=study, measure="OR",
data=HinksEtAl2010)
forestplot(hinks.es)