| drayleigh {bayesmeta} | R Documentation |
The Rayleigh distribution.
Description
Rayleigh density, distribution, quantile function, random number generation, and expectation and variance.
Usage
drayleigh(x, scale=1, log=FALSE)
prayleigh(q, scale=1)
qrayleigh(p, scale=1)
rrayleigh(n, scale=1)
erayleigh(scale=1)
vrayleigh(scale=1)
Arguments
x, q |
quantile. |
p |
probability. |
n |
number of observations. |
scale |
scale parameter ( |
log |
logical; if |
Details
The Rayleigh distribution arises as the distribution of the
square root of an exponentially distributed (or
\chi^2_2-distributed) random variable.
If X follows an exponential distribution with rate \lambda
and expectation 1/\lambda, then Y=\sqrt{X} follows a
Rayleigh distribution with scale
\sigma=1/\sqrt{2\lambda} and
expectation \sqrt{\pi/(4\lambda)}.
Note that the exponential distribution is the maximum entropy distribution among distributions supported on the positive real numbers and with a pre-specified expectation; so the Rayleigh distribution gives the corresponding distribution of its square root.
Value
‘drayleigh()’ gives the density function,
‘prayleigh()’ gives the cumulative distribution
function (CDF),
‘qrayleigh()’ gives the quantile function (inverse CDF),
and ‘rrayleigh()’ generates random deviates.
The ‘erayleigh()’ and ‘vrayleigh()’
functions return the corresponding Rayleigh distribution's
expectation and variance, respectively.
Author(s)
Christian Roever christian.roever@med.uni-goettingen.de
References
C. Roever, R. Bender, S. Dias, C.H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. Research Synthesis Methods, 12(4):448-474, 2021. doi:10.1002/jrsm.1475.
N.L. Johnson, S. Kotz, N. Balakrishnan. Continuous univariate distributions, volume 1. Wiley, New York, 2nd edition, 1994.
See Also
dexp, dlomax,
dhalfnormal, dhalft, dhalfcauchy,
TurnerEtAlPrior, RhodesEtAlPrior,
bayesmeta.
Examples
########################
# illustrate densities:
x <- seq(0,6,le=200)
plot(x, drayleigh(x, scale=0.5), type="l", col="green",
xlab=expression(tau), ylab=expression("probability density "*f(tau)))
lines(x, drayleigh(x, scale=1/sqrt(2)), col="red")
lines(x, drayleigh(x, scale=1), col="blue")
abline(h=0, v=0, col="grey")
###############################################
# illustrate exponential / Rayleigh connection
# via a quantile-quantile plot (Q-Q-plot):
N <- 10000
exprate <- 5
plot(sort(sqrt(rexp(N, rate=exprate))),
qrayleigh(ppoints(N), scale=1/sqrt(2*exprate)))
abline(0, 1, col="red")
###############################################
# illustrate Maximum Entropy distributions
# under similar but different constraints:
mu <- 0.5
tau <- seq(0, 4*mu, le=100)
plot(tau, dexp(tau, rate=1/mu), type="l", col="red", ylim=c(0,1/mu),
xlab=expression(tau), ylab="probability density")
lines(tau, drayleigh(tau, scale=1/sqrt(2*1/mu^2)), col="blue")
abline(h=0, v=0, col="grey")
abline(v=mu, col="darkgrey"); axis(3, at=mu, label=expression(mu))
# explicate constraints:
legend("topright", pch=15, col=c("red","blue"),
c(expression("Exponential: E["*tau*"]"==mu),
expression("Rayleigh: E["*tau^2*"]"==mu^2)))