dinvchi {bayesmeta} | R Documentation |
Inverse-Chi distribution.
Description
(Scaled) inverse-Chi density, distribution, and quantile functions, random number generation and expectation and variance.
Usage
dinvchi(x, df, scale=1, log=FALSE)
pinvchi(q, df, scale=1, lower.tail=TRUE, log.p=FALSE)
qinvchi(p, df, scale=1, lower.tail=TRUE, log.p=FALSE)
rinvchi(n, df, scale=1)
einvchi(df, scale=1)
vinvchi(df, scale=1)
Arguments
x , q |
quantile. |
p |
probability. |
n |
number of observations. |
df |
degrees-of-freedom parameter ( |
scale |
scale parameter ( |
log |
logical; if |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The (scaled) inverse-Chi distribution is defined as the
distribution of the (scaled) inverse of the square root of a
Chi-square-distributed random variable. It is a special case of the
square-root inverted-gamma distribution (with
\alpha=\nu/2
and \beta=1/2
) (Bernardo and Smith;
1994). Its probability density function is given by
p(x) \;=\; \frac{2^{(1-\nu/2)}}{s \, \Gamma(\nu/2)}
\Bigl(\frac{s}{x}\Bigr)^{(\nu+1)}
\exp\Bigl(-\frac{s^2}{2\,x^2}\Bigr)
where \nu
is the degrees-of-freedom and s
the
scale parameter.
Value
‘dinvchi()
’ gives the density function,
‘pinvchi()
’ gives the cumulative distribution
function (CDF),
‘qinvchi()
’ gives the quantile function (inverse CDF),
and ‘rinvchi()
’ generates random deviates.
The ‘einvchi()
’ and ‘vinvchi()
’
functions return the corresponding distribution's
expectation and variance, respectively.
Author(s)
Christian Roever christian.roever@med.uni-goettingen.de
References
C. Roever, R. Bender, S. Dias, C.H. Schmid, H. Schmidli, S. Sturtz, S. Weber, T. Friede. On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis. Research Synthesis Methods, 12(4):448-474, 2021. doi:10.1002/jrsm.1475.
J.M. Bernardo, A.F.M. Smith. Bayesian theory, Appendix A.1. Wiley, Chichester, UK, 1994.
See Also
Examples
#################################
# illustrate Chi^2 - connection;
# generate Chi^2-draws:
chi2 <- rchisq(1000, df=10)
# transform:
invchi <- sqrt(1 / chi2)
# show histogram:
hist(invchi, probability=TRUE, col="grey")
# show density for comparison:
x <- seq(0, 1, length=100)
lines(x, dinvchi(x, df=10, scale=1), col="red")
# compare theoretical and empirical moments:
rbind("theoretical" = c("mean" = einvchi(df=10, scale=1),
"var" = vinvchi(df=10, scale=1)),
"Monte Carlo" = c("mean" = mean(invchi),
"var" = var(invchi)))
##############################################################
# illustrate the normal/Student-t - scale mixture connection;
# specify degrees-of-freedom:
df <- 5
# generate standard normal draws:
z <- rnorm(1000)
# generate random scalings:
sigma <- rinvchi(1000, df=df, scale=sqrt(df))
# multiply to yield Student-t draws:
t <- z * sigma
# check Student-t distribution via a Q-Q-plot:
qqplot(qt(ppoints(length(t)), df=df), t)
abline(0, 1, col="red")